Гематология и онкология

139 Подходы к лечению пациентов с анемией ... 1622
Alan E. Lichtin, MD
 Продукция эритроцитов ... 1622
 Этиология анемии ... 1622
 Оценка анемии ... 1623
 Лечение анемии .. 1628

140 Анемии, обусловленные нарушением эритропоэза 1628
Alan E. Lichtin, MD
 Железодефицитная анемия .. 1629
 Сидеробластные анемии ... 1633
 Анемия хронического заболевания .. 1634
 Гипопролиферативные анемии ... 1635
 Апластическая анемия ... 1636
 Анемия при миелофтизе ... 1638
 Мегалобластные макроцитарные анемии 1639
 Миелодисплазия и анемия, обусловленная нарушением
 транспорта железа .. 1641

141 Гемолитические анемии ... 1641
Alan E. Lichtin, MD
 Автоиммунная гемолитическая анемия ... 1645
 Пароксизмальная ночная гемоглобинурия 1650
 Травматическая гемолитическая анемия .. 1651
 Наследственный сфероцитоз и наследственный эллиптоцитоз 1651
 Стоматоцитоз и анемия, обусловленная гипофосфатемией 1653
 Дефекты ферментов цикла Эмбедена-Мейергофа 1654
 Дефицит глукозо-6-фосфатдегидрогеназы 1654
 Серповидноклеточная анемия ... 1655
 Болезнь гемоглобина С ... 1660
 Болезнь гемоглобина S-C ... 1660
 Болезнь гемоглобина E ... 1661
 Талассемии ... 1661
 Гемоглобин S-β-талассемия .. 1663

142 Нейтропения и лимфоцитопения ... 1663
Mary Territo, MD
 Нейтропения .. 1664
 Лимфоцитопения ... 1670

143 Тромбоцитопения и тромбоцитарная дисфункция 1672
David J. Kuter
 Приобретенная дисфункция тромбоцитов 1676
 Наследственные внутренние нарушения тромбоцитов 1677
 Болезнь Виллебранда ... 1678
 Иммунная тромбоцитопения ... 1680
 Тромбоцитопения, возникающая из-за селезеночной секвестрации 1682
<table>
<thead>
<tr>
<th>Раздел 12. Гематология и онкология</th>
</tr>
</thead>
<tbody>
<tr>
<td>Другие причины тромбоцитопении</td>
</tr>
<tr>
<td>Тромботическая тромбоцитопеническая пурупа и гемолитико-уремический синдром</td>
</tr>
<tr>
<td>Гемостаз</td>
</tr>
<tr>
<td>Joel L. Moake, MD</td>
</tr>
<tr>
<td>Чрезмерное кровотечение</td>
</tr>
<tr>
<td>Тромботические заболевания</td>
</tr>
<tr>
<td>Joel L. Moake, MD</td>
</tr>
<tr>
<td>Тромботические заболевания</td>
</tr>
<tr>
<td>Коагуляционные нарушения</td>
</tr>
<tr>
<td>Joel L. Moake, MD</td>
</tr>
<tr>
<td>Диссеминированное внутрисосудистое свертывание</td>
</tr>
<tr>
<td>Гемофилия</td>
</tr>
<tr>
<td>Коагуляционные нарушения, вызванные циркулирующими антикоагулянтами</td>
</tr>
<tr>
<td>Редкие наследственные коагуляционные нарушения</td>
</tr>
<tr>
<td>Кровотечения, вызванные повреждением кровеносных сосудов (вазопатии)</td>
</tr>
<tr>
<td>David J. Kuter</td>
</tr>
<tr>
<td>Аутоэритроцитарная сенсибилизация (Синдром Гарднера – Даймонда)</td>
</tr>
<tr>
<td>Диспротеинемия, вызывающая сосудистую пурупу</td>
</tr>
<tr>
<td>Наследственная геморрагическая телеангиэктазия</td>
</tr>
<tr>
<td>Пурура симплекс</td>
</tr>
<tr>
<td>Сенильная (старческая) пурупа</td>
</tr>
<tr>
<td>Заболевания селезенки</td>
</tr>
<tr>
<td>Harry S. Jacob, MD</td>
</tr>
<tr>
<td>Спленомегалия</td>
</tr>
<tr>
<td>Эозинофильные нарушения</td>
</tr>
<tr>
<td>Jane Liesveld, MD, and Patrick Reagan, MD</td>
</tr>
<tr>
<td>Эозинофилия</td>
</tr>
<tr>
<td>Гистиоцитарные синдромы</td>
</tr>
<tr>
<td>Jeffrey M. Lipton, MD, PhD</td>
</tr>
<tr>
<td>Гистиоцитоз из клеток Лангерганса</td>
</tr>
<tr>
<td>Гемофагоцитарный лимфо-гистиоцитоз</td>
</tr>
<tr>
<td>Болезнь Розаи – Дорфмана</td>
</tr>
<tr>
<td>Миелопролиферативные заболевания</td>
</tr>
<tr>
<td>Josef T. Prchal, MD, and Scott Samuelson, MD</td>
</tr>
<tr>
<td>Эссенциальная тромбоцитонемия</td>
</tr>
<tr>
<td>Первичный миелофиброз</td>
</tr>
<tr>
<td>Истинная полицитемия</td>
</tr>
<tr>
<td>Лейкозы</td>
</tr>
<tr>
<td>Michael E. Rytting</td>
</tr>
<tr>
<td>Острый лейкоз</td>
</tr>
<tr>
<td>Хронический лейкоз</td>
</tr>
<tr>
<td>Миелодиспластический синдром</td>
</tr>
</tbody>
</table>
Раздел 12. Гематология и онкология

153 Лимфомы ... 1751
Carol S. Portlock, MD
Лимфома Ходжкина ... 1752
Некоджкинские лимфомы .. 1756
Лимфома Беркитта ... 1761
Грибовидный микоз ... 1762

154 Плазмоклеточные заболевания 1763
James R. Berenson, MD
Болезни тяжелых цепей ... 1764
Макроглобулинемия ... 1766
Моноклональная гаммапатия неясного генеза 1768
Множественная миелома ... 1768

155 Перегрузка железом .. 1773
Candido E. Rivera
Гемосидероз ... 1773
Первичный гемохроматоз ... 1774
Вторичная перегрузка железом .. 1777

156 Трансфузионная медицина .. 1778
Ravindra Sarode, MD
Забор крови ... 1778
Продукты крови ... 1781
Техника трансфузии ... 1783
Осложнения при трансфузии .. 1784
Терапевтический аферез ... 1789

157 Общие представления о раке .. 1791
Bruce A. Chabner, MD, and Elizabeth Chabner Thompson, MD, MPH
Клеточная и молекулярная основа опухолевого роста 1792
Диагностика рака .. 1796
Скрининг рака ... 1798
Клинические осложнения онкологических заболеваний 1800
Метастаз без выявленного первичного очага 1800
Паранеопластические синдромы .. 1801

158 Иммунология опухолей ... 1804
Dmitry Gabrilovich, MD, PhD
Опухолевые антигены ... 1805
Ответ организма на развитие опухоли .. 1805
Иммунодиагностика опухолей ... 1807
Иммунотерапия рака ... 1808

159 Принципы лечения злокачественных опухолей 1811
Bruce A. Chabner, MD, and Elizabeth Chabner Thompson, MD, MPH
Методы лечения онкологических заболеваний 1812
Лечение побочных эффектов противоопухолевой терапии 1823
Раковая кахексия .. 1828
Инкурабельный рак ... 1828
Подходы к лечению пациентов с анемией

Продукция эритроцитов

Продукция эритроцитов (эритропоэз) осуществляется в костном мозге под контролем гормона эритропоэтина. Эритропоэтин вырабатывается в юкстагломерулярном аппарате почек в ответ на снижение уровня O₂ (как при анемии и гипоксии) и повышение уровня андрогенов. Кроме эритропоэтина для эритропоэза необходимы достаточные количества субстратов, в основном железа, витамина В₁₂ и фолиевой кислоты.

Продолжительность жизни эритроцитов составляет примерно 120 дней. Затем они лишаются клеточной мембраны и в большинстве своем элиминируются из системного кровотока фагоцитирующими клетками селезенки, печени и костного мозга. В указанных клетках и в гепатоцитах гемоглобин (Hb) разрушается в первую очередь под действием гемоксигеназной системы при сохранении (и последующей повторной утилизации) железа, при этом гем разрушается до билирубина посредством ряда ферментативных реакций, после чего белок утилизируется. Поддержание стабильного количества эритроцитов требует ежедневного обновления 1/120 клеточного пула; незрелые эритроциты (ретикулоциты) появляются постоянно и составляют от 0,5% до 1,5% популяции периферических эритроцитов.

Низкий уровень андрогенов, обусловливающий снижение уровня эритропоэтина у женщин и девочек, а также у пожилых пациентов, может располагать к развитию анемии, поскольку снижает способность костного мозга к продукции эритроцитов. Уровень Hb и гематокрит незначительно снижается у женщин после многоплодной беременности.

Этиология анемии

Анемия представляет собой снижение числа эритроцитов, гематокрита или уровня гемоглобина. Количество эритроцитов отражает баланс между продукцией и разрушением или потерей эритроцитов. Таким образом, анемия может развиваться по одному или более механизму из 3 основных (табл. 139–1):
• кровопотеря,
• нарушение эритропоэза,
• избыточный гемолиз (разрушение эритроцитов).

Кровопотеря может иметь острый и хронический характер. Анемия развивается только через несколько часов после острой кровопотери, когда интерстициальная жидкость проникает в сосудистое русло и разбивает имеющуюся эритроцитарную массу. В течение первых нескольких часов уровень полиморфноядерных гранулоцитов, тромбоцитов и, при тяжелом кровотечении, незрелых лейкоцитов и нормобластов может повышаться. Хроническая кровопотеря может привести к развитию анемии, если скорость потери эритроцитов превышает скорость их замены или, что происходит чаще, если усиленный эритропоэз истощает запасы железа в организме.

Недостаточность эритропоэза может быть обусловлена различными причинами. Полное прекращение эритропоэза приводит к снижению числа эритроцитов со скоростью примерно 7–10% в неделю (1% в день). Нарушение эритропоэза, даже недостаточное для снижения числа эритроцитов, часто приводит к появлению эритроцитов аномальной формы и размеров.

Избыточный гемолиз может быть следствием внутренних нарушений в эритроцитах или воздействия внешних факторов, таких как присутствие на их поверхности антител, что приводит к разрушению эритроцитов. Увеличенная селе-
Глава 139. Подходы к лечению пациентов с анемией

Оценка анемии

Анемия – это не диагноз; это проявление вызвавшего ее заболевания. Поэтому даже самые легкие, бессимптомные формы анемии заслуживают внимания и исследования с целью диагностики и лечения основного заболевания.

Наиболее частая причина анемии – острая или хроническая кровопотеря. Диагноз обычно основывается на анамнезе, результатах общего осмотра и исследованиях кала на наличие скрытой крови. В некоторых случаях необходимо дополнительное исследование на скрытую кровь. Если кровопотеря не выявлена, обычно проводят лабораторные тесты, чтобы установить, не связана ли анемия с дефицитом продукции эритроцитов или избыточным гемолизом.
Анамнез
Изучение анамнеза должно быть направлено на поиск факторов риска, характерных для анемии, а также симптомов как анемии, так и основного заболевания.
Существует множество факторов риска развития анемии. Например, вегетарианская диета предрасполагает к анемии, обусловленной дефицитом витамина B₁₂, тогда как алкоголизм повышает риск развития анемии вследствие дефицита фолиевой кислоты. Ряд гемоглобинопатий имеет наследственный характер, а применение определенных лекарственных препаратов предрасполагает к гемолизу. При раке, ревматических заболеваниях и хронических воспалительных заболеваниях может наблюдатьсь подавление активности костного мозга или увеличение селезенки.
Симптомы анемии не являются специфичными и не помогают дифференцировать различные типы анемий. Симптомы отражают компенсаторную реакцию на гипоксию тканей и обычно развиваются, когда уровень Hb снижается до 7 г/дл и менее. Однако они могут развиваться и при более высоком уровне гемоглобина у пациентов с ограниченным сердечно-легочным резервом или в случае, когда анемия развилась стремительно. На анемию могут указывать такие симптомы, как слабость, появление патен в поле зрения, тошнота, головокружение, загрудинные боли, синкопы и одышка. Также могут наблюдаться головокружение, головная боль, пульсирующий шум в ушах, аменорея, снижение либидо и желудочно-кишечные проявления. У пациентов с тяжелой гипоксией тканей или гиповолемией может развиваться сердечная недостаточность или шок.
Определенные симптомы могут указывать на причину анемии. Например, мелена, носовое кровотечение, гематохезия, гематемезис или мениногогия указывают на кровотечение. Желтуха и темный цвет мочи в отсутствие заболеваний печени позволяют предположить гемолиз. Потеря веса может указывать на онкологическое заболевание. Нелокализованная сильная боль в костях или грудной клетке позволяет предположить серповидно-клеточную анемию, а парестезия костей по типу «перчаток» — дефицит витамина B₁₂ или дефицит фолиевой кислоты.
Физикальный осмотр
Полный физикальный осмотр необходим. Признаки анемии сами по себе не являются ни чувствительными, ни специфичными; однако при тяжелой анемии часто наблюдается бледность.
Признаки основного заболевания имеют большую диагностическую ценность, чем сами симптомы анемии. Каловые массы, в которых определяется скрытая кровь, свидетельствуют о желудочно-кишечном кровотечении. Геморрагический шок (например, гипотензия, такикардия, бледность, тахипноэ, обильное потоотделение, спутанность сознания) может быть следствием острого кровотечения. Желтуха может указывать на гемолиз. Сplenеномегалия может развиваться при гемолизе, гемоглобинопатии, заболеваниях соединительной ткани, миелопролиферативных заболеваниях, инфекции или раке. Периферическая нейропатия дает повод заподозрить дефицит витамина B₁₂. Увеличение живота у пациента с травмой, нанесенной тупым предметом, может указывать на кровотечение. Петехии развиваются при тромбоцитопении или дисфункции тромбоцитов. Лихорадка и сердечные шумы могут указывать на инфекционный эндокардит, возможную причину гемолиза. В редких случаях выраженная сердечная недостаточность развивается как компенсаторная реакция на индуцированную анемией гипоксию тканей.
Лабораторные тесты
■ Клинический анализ крови с определением числа лейкоцитов и тромбоцитов.
■ Эритроцитарные индексы и морфология.
■ Число ретикулоцитов.
■ Мазок периферической крови.
■ В некоторых случаях аспирация и биопсия костного мозга.
Лабораторная оценка начинается с клинического анализа крови, включая подсчет числа лейкоцитов и тромбоцитов, эритроцитарных индексов и определение морфологии эритроцитов (средний объем эритроцитов [MCV], среднее содержание Hb в эритроцитах [MCH], средняя концентрация Hb в эритроцитах [MCHC], ширина распределения эритроцитов по объему [RDW]), а также и изучения мазка периферической кро-
ви. Число ретикулоцитов показывает, насколько хорошо костный мозг способен компенсировать анемию. Выбор последующих тестов основан на этих результатах и клинической картине. Выявление общих диагностических алгоритмов может ускорить постановку диагноза (табл. 139–2).

Автоматизированный общий анализ крови позволяет непосредственно измерить уровень Hb, число эритроцитов и MCV. Гематокрит (доля эритроцитов в крови), MCH и MCHC являются вычисляемыми значениями. Диагностический критерий анемии у мужчин – уровень Hb <14 г/дл, для женщин Hb <12 г/дл, гематокрит <42%, или количество эритроцитов <4,5 млн/л; для женщин Hb <12 г/дл, гематокрит <37%, или количество эритроцитов <4 млн/л. Для детей границы нормы меняются с возрастом, в связи с чем необходимо выбирать специальные возрастные таблицы. Популяции эритроцитов называют микроцитарными (малые клетки), если MCV <80 фл, и макроцитарными (крупные клетки), если MCV >100 фл. Однако, поскольку ретикулоциты также крупнее зрелых эритроцитов, при высоком ретикулоцитозе MCV может повышаться, не отражая при этом изменения в продукции эритроцитов. Автоматизированные методики также позволяют определить степень вариабельности размеров эритроцитов, выраженную как RDW. Высокая RDW может быть единственным указанием на сопутствующие микроцитарные и макроцитарные нарушения (или сопутствующий микроцитоз и ретикулоцитоз); при этом значение MCV будет оставаться нормальным, т.к. оно отражает лишь среднюю величину. Термин «гипохромия» относится к популяции эритроцитов, в которой MCH <27 пг/эритроцит, или MCHC <30%. Популяции эритроцитов с нормальными значениями MCH или MCHC называют норноморхными.

Эритроцитарные индексы могут помочь определить механизм развития анемии и сузить круг возможных причин. Микроцитоз обнаруживается при нарушении синтеза гема или глобина. Наиболее распространенными причинами являются железодефицит, талассемия и

<table>
<thead>
<tr>
<th>ТАБЛ. 139–2. ХАРАКТЕРИСТИКА НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ ТИПОВ АНЕМИИ</th>
<th>ЭТИОЛОГИЯ ИЛИ ТИП</th>
<th>МОРФОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ</th>
<th>ХАРАКТЕРНЫЕ ОСОБЕННОСТИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кровопотеря, острая</td>
<td>Нормохромная-нормоцитарная, с полиэозаметофилей. Гиперплазический костный мозг</td>
<td>В тяжелых случаях возможно обнаружение ядерных эритроцитов и сдвиг влево лейкоцитарной формулы</td>
<td>Лейкоцитоз, тромбоцитоз</td>
</tr>
<tr>
<td>Кровопотеря, хроническая</td>
<td>То же, что при железодефициту</td>
<td>То же, что при железодефициту</td>
<td></td>
</tr>
<tr>
<td>Дефицит фолиевой кислоты</td>
<td>То же, что при дефиците витамина B12</td>
<td>Уровень фолиевой кислоты в сыроватке <5 нг/мл (<11 нмоль/л)</td>
<td>Уровень фолиевой кислоты в эритроцитах <225 нг/мл эритроцитарной массы (<510 нмоль/л)</td>
</tr>
<tr>
<td>Наследственный сфероцитоз</td>
<td>Сферические микроциты</td>
<td>Нормобластная эритроидная гиперплазия</td>
<td>Повышенный средний уровень Hb в эритроцитах</td>
</tr>
<tr>
<td>Гемолиз, острый</td>
<td>Нормохромная-нормоцитарная</td>
<td>Гиперплазия эритроидного ростка в костном мозге</td>
<td>Повышенный уровень билирубина и ЛДГ в сыроватке</td>
</tr>
<tr>
<td>Гемолиз, хронический</td>
<td>Нормохромная-нормоцитарная</td>
<td>Гиперплазия эритроидного ростка в костном мозге</td>
<td>Повышенный уровень билирубина и ЛДГ в сыроватке</td>
</tr>
</tbody>
</table>

В тяжелых случаях возможно обнаружение ядерных эритроцитов и сдвиг влево лейкоцитарной формулы. Лейкоцитоз, тромбоцитоз, повышенный уровень билирубина и ЛДГ в сыроватке. Повышенный уровень билирубина и ЛДГ в сыроватке, ускоренный оборот радиоактивного железа, гемосидеринурия.
<table>
<thead>
<tr>
<th>ЭТИОЛОГИЯ ИЛИ ТИП</th>
<th>МОРФОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ</th>
<th>ХАРАКТЕРНЫЕ ОСОБЕННОСТИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Инфекции или хроническое воспаление</td>
<td>На ранних стадиях нормохромная-нормоцитарная, затем микроцитарная. Нормобластный костный мозг нормальные запасы железа.</td>
<td>Снижение уровня железа в сыворотке. Снижение общей способности связывать железо. Нормальный уровень ферритина в сыворотке. Нормальный уровень железа в костном мозге.</td>
</tr>
<tr>
<td>Железодефицит</td>
<td>Микроцитарная, с анизоцитозом и пойкилоцитозом. Ретикулоцитоз. Гиперплазический костный мозг, с отсроченной гемолобинизацией.</td>
<td>Возможна ахлоргидрия, глюсис и вогнутая форма ногтей. Отсутствие окрашиваемого железа в костном мозге. Низкий уровень железа в сыворотке. Повышенная общая железо связывающая способность. Низкий уровень ферритина в сыворотке.</td>
</tr>
<tr>
<td>Недостаточность костного мозга</td>
<td>Нормохромная-нормоцитарная (может быть микроцитарной). Ретикулоцитоз. Неудачи при выполнении аспирации костного мозга (часто) или очевидная гипоплазия эритроидного ростка или всех элементов.</td>
<td>Идиопатическая (>50%) или вторичная, обусловленная воздействием токсических лекарственных препаратов или химических веществ (например, хлорамфеникола, хинокрина, гидантоина, инсектицидов).</td>
</tr>
<tr>
<td>Замещение костного мозга (миелофтиз)</td>
<td>Анизоцитоз и пойкилоцитоз. Ядерные эритроциты. Ранние предшественники гранулоцитов. Аспирация костного мозга может быть неудачной или демонстрировать признаки лейкемии, миеломы или наличие метастатических клеток.</td>
<td>Инфильтрация костного мозга инфекционной гранулемой, злокачественными опухолями, фиброзом или липидным гистоцитозом. Возможные изменения в костях. Накопление меченого железа больше над селезенкой и печенью, чем над крестцом.</td>
</tr>
<tr>
<td>Пароксизмальная холодовая гемолобинурия</td>
<td>Нормохромная-нормоцитарная.</td>
<td>После пребывания на холоде. Развивается в результате появления холодового агглютинина или гемолизина. Часто связана с сифилисом или другими инфекциями.</td>
</tr>
<tr>
<td>Пароксизмальная ночной гемолобинурия</td>
<td>Нормоцитарная (может быть гипохромной в результате железодефицита). Костный мозг может быть гиперклеточным или гипоклеточным.</td>
<td>Темная утренняя моча. Гемосидерин. Положительный результат теста на кислотный гемолиз (тест Хэма) и сахарозная проба (в большинстве своем заменяются проточной цитофлуориметрией).</td>
</tr>
<tr>
<td>Серповидно-клеточная анемия</td>
<td>Анизоцитоз и пойкилоцитоз. Тонкие клетки. Мишеневидные клетки. Базофильная зернистость. Ядерные эритроциты в гомозиготах.</td>
<td>Врожденные или приобретенные нарушения метаболизма. В гомозиготах, анемия с детства. Спленомегалия. Изменения в костях на рентгенограмме.</td>
</tr>
<tr>
<td>Дефицит витамина B12</td>
<td>Микроцитарная. Тонкие клетки. Мишеневидные клетки. Базофильная зернистость. Анизоцитоз и пойкилоцитоз. Ядерные эритроциты в гомозиготах.</td>
<td>Снижение эластичности эритроцитов. Сывороточный уровень витамина B12 <180 пг/мл (<130 пмоль/л). Часто вовлечены ЖКТ и ЦНС. Положительный результат теста Шиллинга (хотя в настоящее время не проводится). Повышенный уровень билирубина в сыворотке. Повышенный уровень ЛДГ. Антитела к внутреннему фактору в сыворотке (часто). Отсутствие секреции желудочного внутреннего фактора.</td>
</tr>
</tbody>
</table>
нарушения синтеза Hb. У некоторых пациентов с хронической анемией MCV микроцитарный или пограничный с микроцитарным. Макроцитоз отмечается при нарушении синтеза ДНК (например, вследствие дефицита витамина В₁₂ или фолата или вследствие приема химиотерапевтических препаратов, таких как гидроксимочевина и антагонисты фолиевой кислоты) и при алкоголизме в связи с нарушениями клеточных мембран. Острое кровотечение может быстро повысить макроцитарные индексы вследствие высвобождения большого количества молодых ретикулоцитов. Нормоцитарные индексы отмечаются при анемиях, развивающихся вследствие дефицита эритропоэтина или неадекватного ответа на него (гипопролиферативные анемии). Геморрагии до развития железодефицита обычно приводят к нормоцитарной и нормохромной анемии, если только число крупных ретикулоцитов не является избыточным.

Исследование мазка периферической крови является высокочувствительным методом диагностики избыточной продукции эритроцитов и гемолиза. Этот анализ точнее, чем автоматизированные методики, позволяет выявлять изменения структуры эритроцитов, тромбоцитопении, наличие ядерных эритроцитов или незрелых гранулоцитов, а также диагностировать и другие отклонения (например, возбудителей малярии и других паразитов, внутриклеточные включения в эритроцитах или гранулоцитах), которые могут иметь место, несмотря на нормальные значения, полученные при автоматическом подсчете клеток крови. Повреждение эритроцитов можно идентифицировать при обнаружении фрагментов разрушенных клеток (шистоцитов), признаков существенных повреждений клеточной мембраны (ovalocytов или spherocitoитов). Мишеневидные клетки (тонкие эритроциты с центральной точкой Hb) – это эритроциты с недостатком Hb или слишком большой мембраной (например, вследствие гемоглобинопатий или нарушений функции печени). Изучение мазка периферической крови может также выявить изменения формы эритроцитов (пойкилоцитоз) и их размера (анизоцитоз).

Ретикулоциты измеряются в процентах (нормальный диапазон – от 0,5 до 1,5%) или в абсолютном количестве (нормальный диапазон – от 50 000 до 150 000/мкл). Повышенные значения указывают на избыточную продукцию или ретикулоцитоз; при наличии анемии ретикулоцитоз позволяет предположить усиленное разрушение эритроцитов. Низкие значения на фоне анемии указывают на сниженную продукцию эритроцитов. Ретикулоцитарный ответ обычно можно оценить на основании числа окаренных синим красителем клеток, обнаруживаемых в мазке периферической крови при прижизненном окрашивании; при этом определение числа ретикулоцитов с помощью проточной цитоферометрии или визуального подсчета клеток, что требует много времени, необязательно.

Аспирация и биопсия костного мозга позволяют непосредственно наблюдать и оценивать предшественников эритроцитов. Можно выявить нарушения в процессе созревания клеток крови (диспоеоз), а также изменения их числа, распределения и закономерность распределения запасов железа в клетках. Аспирация и биопсия костного мозга проводятся для диагностики следующих состояний:

- необъясненная анемия;
- другие цитопении;
- необъясненный лейкоцитоз;
- тромбоцитоз;
- подозрение на лейкоз, множественную миелолому или миелозофуриз.

При опухолевых процессах в системе гемопоза или других опухолях, а также при подозрении на врожденные нарушения предшественников эритроцитов (например, при анемии Фанкони), можно провести цитогенетический и молекулярный анализ. При подозрении на лимфопролиферативный или миелопролиферативный статус для определения иммунофенотипа можно применить проточную цитоферометрию. Аспирация и биопсия костного мозга – технически простая методика, не связанная с каким-либо риском для здоровья. Эти процедуры безопасны и информативны в случае подозрения на гематологическое заболевание. Обе процедуры обычно можно совместить в одну. Поскольку для биопсии необходимо взять материал из кости соответствующей глубины, образец обычно берут из заднего (или, реже, переднего) гребня подвздошной кости. Если не-
обходилось провести только аспирацию, можно взять образец из грудины.

Уровень билирубина и ЛДГ в сыворотке иногда может помочь дифференцировать гемолиз и кровопотерю; и тот и другой показатель повышаются при гемолизе и остаются в рамках нормальных значений при кровопотере. Другие тесты обсуждаются применительно к специфическим типам анемий и кровотечений.

ЛЕЧЕНИЕ АНЕМИИ

При возможности необходимо лечить причину анемии. Когда уровень Hb снижается до опасного для здоровья (например, < 7 г/дл у пациентов без сердечно-легочной недостаточности или более высоких значений у пациентов с таковыми патологиями), трансфузия эритроцитарной массы временно повышает кислородную емкость крови. Трансфузию эритроцитарной массы необходимо проводить у пациентов:

- с сердечно-легочными симптомами или высоким риском их появления;
- с активной неконтролируемой кровопотерей;
- с признаками гипоксии или ишемии внутренних органов (например, неврологические симптомы ишемии, загрудинные боли, тахикардия у пациентов с сердечной недостаточностью или тяжелой формой ХОБЛ).

140 **Анемии, обусловленные нарушением эритропоэза**

Анемия (снижение количества эритроцитов, содержания гемоглобина или гематокрита) может быть результатом снижения продукции эритроцитов (эритропоэз), их усиленного разрушения или кровопотери. Анемии, обусловленные нарушением эритропоэза, как правило, диагностируются по наличию ретикулоцитоза в периферической крови. Эритроцитарные индексы, в первую очередь MCV, сужают дифференциальный диагноз нарушений эритропоэза и определяют спектр дальнейших исследований.

Микроцитарные анемии являются результатом недостаточного или дефектного синтеза гема или глобина. К микроцитарным анемиям относятся железодефицитные анемии, анемии, обусловленные нарушением транспорта или утилизации железа (в т.ч. сидеробластные анемии и анемии, связанные с отравлением свинцом), талассемии (которые также вызывают гемолиз). При наличии у пациента микроцитарной анемии, как правило, необходимо исследование содержания железа в организме.

Нормоцитарные анемии являются результатом первичной недостаточности функции костного мозга. Они, как правило, характеризуются нормальным показателем распределения эритроцитов по объему (RDW) и нормохромными эритроцитарными индексами. Механизмы могут быть следующими: гипопролиферация (дефицит эритропоэтина или снижение ответа на него), гипоплазия (при апластических анемиях), миелофтиз и миелодисплазия.

Макроцитарные анемии чаще всего являются результатом нарушения синтеза ДНК, которое обусловлено дефицитом витамина В12 или фолиевой кислоты.

При некоторых анемиях данные исследования периферической крови могут быть различными. Анемия хронического заболевания может быть микроцитарной или нормоцитарной. Анемия при миелодиспластическом синдроме может быть микроцитарной, нормоцитарной или макроцитарной. Лечение анемии, обусловленной снижением продукции эритроцитов, зависит от причины заболевания; кроме того, при анемии, обусловленной почечной недостаточностью, часто может быть полезна стимуляция эритропоэза путем применения человеческого рекомбинантного эритропоэтина (ЭПО). Поскольку усиление эритропоэза повышает потребность в железе, в
Глава 140. Анемии, обусловленные нарушением эритропоэза

1629

В рамках лечения необходимо дополнительное назначение препаратов железа.

ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ
(анемия при хронической кровопотере; хлороз)

Дефицит железа является наиболее частой причиной анемии и обычно обусловлен кровопотерей. Симптомы, как правило, неспецифичны. Имеется тенденция к микроцистозу и гипохромии эритроцитов, запасы железа в организме снижены, о чем свидетельствует низкий уровень сывороточного ферритина и железа, а также высокая железосвязывающая способность сыворотки крови. При установлении данного диагноза предполагается наличие скрытой кровопотери. Лечение включает в себя заместительную терапию препаратами железа и лечение кровопотери.

Патофизиология

Железо, содержащееся в организме, распределяется в активный метаболизм и в пул хранения. Общие запасы железа в организме составляют 3,5 г у здоровых мужчин, 2,5 г у женщин; различия связаны с массой тела, низким содержанием андрогенов и снижением запасов железа в организме женщин, что обусловлено менструациями и беременностью. Распределение железа в мужском организме в среднем происходит следующим образом: гемоглобин – 2100 мг; ферритин – 700 мг (в клетках и плазме крови); гемосидерин – 300 мг (в клетках); миoglobин – 200 мг; тканевые ферменты (гемовые и негемовые) – 150 мг; транспортная система железа – 3 мг.

Всасывание (абсорбция) железа. Железо всасывается в двенадцатиперстной кишке и верхних отделах подвздошной кишки. Всасывание железа определяется типом молекулы железа и сочетанием с другими компонентами пищи. Абсорбция железа максимальна, когда пища содержит гемовое железо (мясо). Пищевое негемовое железо должно быть предварительно восстановлено до двухвалентного состояния и выделено из связи с компонентами пищи путем воздействия желудочного сока. Абсорбция негемового железа снижается при употреблении некоторых компонентов пищи (фитоволокна и полифенолы, содержащиеся в овощах; танины чая, в т.ч. фосфопротеины; отруби), определенных антибиотиков (например, тетрациклина). Аскорбиновая кислота является единственным компонентом пищи, повышающим абсорбцию негемового железа.

Средний пищевой рацион американца содержит 6 мг элементарного железа на 1 ккал пищи, что обеспечивает адекватный гомеостаз железа. Однако из 15 мг железа, потребляемых с пищей за день, взрослый человек ассорбирует только 1 мг, что приблизительно соответствует ежедневным потерям железа с десквамацией клеток эпителия кожи и кишечника. При истощении запасов железа абсорбция повышается, хотя точные сигнальные механизмы, запускающие данный процесс, остаются неизвестными; тем не менее, абсорбция редко повышается до значения >6 мг/день даже при добавлении дополнительных источников железа. У детей потребность в железе выше, чем у взрослых, поэтому абсорбция также повышена в соответствии с этой потребностью.

Транспорт и утилизация железа. Из клеток слизистой оболочки кишечника железо переходит в трансферрин, железотранспортный белок, который синтезируется в печени; трансферрин может переносить железо из клеток (эпителиоцитов кишечника, макрофагов) к специфическим рецепторам эритробластов, клеток плаценты и гепатоцитов. Трансферрин переносит железо к митохондриям эритробластов, где он включается в состав протопорфиринов, необходимых для синтеза гема. Затем трансферрин высвобождается для последующей ретикуляции. Синтез трансферрлина повышается при дефиците железа, но снижается при любых хронических заболеваниях.

Накопление и рециркуляция железа. Железо, которое не используется для эритропоза, переносится в пул накопления железа с помощью железотранспортного белка трансферрлина; железо накапливается в форме ферритина и гемосидерина. Наиболее важную роль играет ферритин (гетерогенная группа белков, окружающих железосодержащее ядро), растворимая активная фракция, которая обеспечивает накопление железа в печени (гепатоциты), костном мозге, селезенке (макрофаги), эритроци-
так и сыворотке крови. Железо, накопленное в форме ферритина, готово к использованию для организма. Циркулирующий уровень сывороточного ферритина соответствует общему содержанию железа в организме (1 нг/мл = 8 мг железа в пуле накопления). Вторым пулом накопления железа является гемосидерин, который обладает относительно низкой растворимостью и откладывается преимущественно в печени (клетки Купфера) и костном мозге (макрофаги).

Поскольку абсорбция железа ограничена, организм сохраняет и реутилизирует (при связывании с трансферрином) доступное железо из старых эритроцитов, подвергающихся фагоцитозу мононуклеарами. Этот механизм обеспечивает около 97% дневной потребности в железе (около 25 мг железа). С возрастом накопление железа имеет тенденцию к повышению, поскольку элиминация железа замедляется.

Дефицит железа. Дефицит железа развивается постепенно. На первом этапе потребности в железе превышают его потребление, вызывая прогрессирующее истощение запасов железа в костном мозге. Когда уменьшаются запасы железа, компенсаторно повышается абсорбция железа с пищей. На поздних стадиях дефицит железа оказывает отрицательное влияние на синтез эритроцитов, что в конечном счете вызывает развитие анемии.

Тяжелый и длительно существующий дефицит железа также может вызывать дисфункцию железосодержащих клеточных ферментов.

Этнология

Поскольку железо плохо всасывается, поступление железа с пищей едва ли соответствует суточной потребности большинства людей. Но для лиц, придерживающихся принятого в западных странах рациона питания, вероятность того, что развитие дефицита железа обусловлено лишь недостатком железа в пище, является крайне низкой. Однако даже умеренная потеря железа в сочетании с повышением потребности в нем или снижением его потребления может вызывать дефицит железа в организме.

Кровопотеря почти всегда является причиной дефицита железа. У мужчин наиболее часто она обусловлена хроническими скрытыми кровотечениями, как правило, источник находится в ЖКТ. У женщин в пеленопаузе распространенной причиной является потери железа во время менструаций (в среднем 0,5 мг железа/день). Другой возможной причиной кровопотери у мужчин и женщин может быть хронический внутрисосудистый гемолиз, при котором количество железа, высвобождаемое при гемолизе, превышает связывающую способность гаптоглобина. Дефицит витамина C может способствовать развитию железодефицитной анемии, вызывая повышенную ломкость капилляров, гемолиз и кровотечения.

Повышение потребности в железе может способствовать развитию дефицита железа. Когда быстрый рост организма (дети до 2 лет и подростки) требует потребления большого количества железа, его содержание в рационе часто бывает недостаточным. Во время беременности потребность плода в поступлении железа повышает потребность в железе организма матери (в среднем 0,5–0,8 мг/день), несмотря на отсутствие менструаций. Лактация также повышает потребность в железе (в среднем на 0,4 мг/день).

Снижение абсорбции железа может быть следствием гастрэктомии и синдрома малабсорбции в верхних отделах тонкой кишки. Реже абсорбция снижается при недостаточном питании.

Симптомы и признаки

Большинство симптомов дефицита железа связано с анемией. К ним относятся утомляемость, одышка, слабость, головокружение и бледность. Повышенная утомляемость также может быть следствием дисфункции железосодержащих клеточных ферментов.

В дополнение к обычным проявлениям анемии при тяжелом дефиците железа могут наблюдаться некоторые редкие симптомы: извращенный аппетит, патологическое пристрастие к употреблению в пищу некоторых веществ (лед, земля, краска). К другим проявлениям тяжелого дефицита железа относятся глюссит, хейлит, вогнутые ногти (койлонихия), реже дисфагия, вызванная образованием эзофагеальной мембраны в заперстневидной области (синдром Пламмера – Винсона).
Глава 140. Анемии, обусловленные нарушением эритропоза

Диагностика

■ ОАК, сывороточное железо, железосвязывающая способность сыворотки крови, сывороточный ферритин.

■ Реже проводится исследование костного мозга.

Железодефицитную анемию необходимо подозревать у пациентов с хронической кровопотерей или микроцитарной анемией, особенно при наличии извращенного аппетита. У таких пациентов необходимо выполнить ОАК, исследование уровня сывороточного железа и ферритина, железосвязывающей способности сыворотки крови.

Уровень железа и железосвязывающую способность сыворотки крови (или трансферрин) обычно определяют совместно, поскольку соотношение данных показателей имеет основное значение. Существуют различные методы исследования; диапазон нормальных значений зависит от используемого метода. В целом нормальный уровень сывороточного железа составляет 75–150 мкг/дл (13–27 мкмоль/л) для мужчин и 60–140 мкг/дл (11–25 мкмоль/л) для женщин; общая железосвязывающая способность сыворотки крови составляет 250–450 мкг/дл (45–81 мкмоль/л). Сывороточный уровень железа снижается при дефиците железа и ряде хронических заболеваний. Он повышается при гемолитических заболеваниях и синдромах перегрузки железом. Пациенты, принимающие пероральные препараты железа, могут иметь нормальные показатели сывороточного железа, несмотря на его дефицит; у таких пациентов для проведения точного обследования необходима приостановка терапии на 24–48 часов. Также при дефиците железа повышается железосвязывающая способность сыворотки крови.

Уровень сывороточного ферритина тесно связан с общим содержанием железа в организме. В большинстве лабораторий к нормальному диапазону относят значения от 30 до 300 нг/мл, среднее значение данного показателя составляет 88 нг/мл у мужчин и 49 нг/мл у женщин. Низкий уровень (<12 нг/мл) является специфическим показателем дефицита железа в организме. Тем не менее ферритин относится к маркерам острой фазы, поэтому его уровень повышается при воспалительных и опухолевых заболеваниях, при повреждениях ткани печени (гепатит) и некоторых злокачественных новообразованиях (особенно при остром лейкозе, лимфоме Ходжкина и опухолях ЖКТ).

Наиболее чувствительным и специфическим критерием нарушения эритропоза, обусловленного дефицитом железа, является отсутствие запасов железа в костном мозге, однако исследование костного мозга в таких случаях проводится редко.

Стадии дефицита железа. Результаты лабораторных исследований позволяют установить стадию железодефицитной анемии.

Стадия 1 характеризуется снижением запасов железа в костном мозге; показатели гемоглобина и сывороточного железа в пределах нормы, но уровень сывороточного ферритина снижен <12 нг/мл. Компенсаторное повышение уровня железа приводит к повышению железосвязывающей способности сыворотки крови (уровень трансферрена).

На 2 стадии нарушается эритропоз. Хотя уровень трансферрена повышается, показатель сывороточного железа снижается; сатурация трансферрена также снижается. Эритропоз нарушается при уровне сывороточного железа ниже 50 мкг/дл (<9 мкмоль/л), снижении сатурации трансферрена до <16% и повышении количества сывороточных рецепторов к ферритину (>8,5 мг/л).

В 3 стадии развивается анемия с нормальными эритроцитарными индексами.

В 4 стадии развивается микроцитарная гипохромная анемия.

В 5 стадии дефицит железа оказывает влияние на тканевой обмен, что приводит к появлению симптомов и признаков заболевания.

Наличие диагноза железодефицитной анемии требует установления ее причины, которой,
как правило, является кровотечение. У пациентов с явной причиной кровопотери (женщины с меноррагиями) дальнейшее обследование можно не проводить. У мужчин и женщин в постменопаузе без явной причины кровопотери необходимо провести обследование ЖКТ, поскольку анемия может быть единственным признаком скрытой опухоли органов ЖКТ. В редких случаях возможна недооценка носовых или мочеполовых кровотечений, эти данные должны быть проанализированы при наличии нормальных результатов обследования ЖКТ.

Другие микроцитарные анемии. Железодефицитную анемию необходимо отличать от других микроцитарных анемий (табл. 140–1). Если у пациента с микроцитарной анемией наличие дефицита железа было исключено с помощью специальных методов исследования, необходимо подозревать наличие анемии хронического заболевания, структурных аномалий гемоглобина (гемоглобинопатии) или врожденных дефектов структуры мембран эритроцитов. Клинические признаки, исследование структуры гемоглобина (электрофорез, выявление HbA₂), генетическое обследование (для выявления α-талассемии) могут помочь разграничить данные заболевания.

Лечение

■ Пероральные препараты железа.
■ Реже препараты железа для парентерально- го введения.

Применение препаратов железа без определения причины заболевания – бесполезная практика; источник кровотечения должен быть установлен даже в случае наличия анемии легкой степени.

Препараты железа назначаются в виде солей двухвалентного железа (сульфат, глюконат, фурмат железа) или сахарида трехвалентного железа внутрь за 30 мин до еды (пища или антациды могут снижать абсорбцию железа).

Таблица 140–1. Дифференциальный диагноз микроцитарной анемии, обусловленной снижением продукции эритроцитов

<table>
<thead>
<tr>
<th>ДИАГНОСТИЧЕСКИЕ КРИТЕРИИ</th>
<th>ДЕФИЦИТ ЖЕЛЕЗА</th>
<th>НАРУШЕНИЕ ТРАНСПОРТНОЙ СИСТЕМЫ ЖЕЛЕЗА</th>
<th>НАРУШЕНИЕ УТИЛИЗАЦИИ ЖЕЛЕЗА В СИДЕРОБЛАСТАХ</th>
<th>НАРУШЕНИЕ РЕУТИЛАЦИИ ЖЕЛЕЗА</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мазок периферической крови</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Степень выраженности микроцитоза (M) и гипохромии (Г)</td>
<td>M>Г</td>
<td>M>Г</td>
<td>M>Г, может быть нормоцитоз</td>
<td>M>Г</td>
</tr>
<tr>
<td>Полихроматофильные клетки-предшественники</td>
<td>Отсутствуют</td>
<td>Отсутствуют</td>
<td>Присутствуют</td>
<td>Отсутствуют</td>
</tr>
<tr>
<td>Зернистость эритроцитов</td>
<td>Отсутствует</td>
<td>Отсутствует</td>
<td>Присутствует</td>
<td>Присутствует</td>
</tr>
<tr>
<td>Эритроциты</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Показатель распределения эритроцитов по объему (RDW)</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>В пределах нормы</td>
</tr>
<tr>
<td>Сывороточное железо</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сывороточное железо: железо-связывающая способность</td>
<td>↓:↑</td>
<td>↓:↓</td>
<td>↑: норма</td>
<td>↓:↓</td>
</tr>
<tr>
<td>% сатурации трансфERRиНА</td>
<td><10</td>
<td>0</td>
<td>>50</td>
<td>>10</td>
</tr>
<tr>
<td>Сывороточный ферритин</td>
<td>(норма 30–300 нг/мл)</td>
<td><12 нг/мл</td>
<td>Данные недоступны</td>
<td>>400 нг/мл</td>
</tr>
<tr>
<td>Костный мозг</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Соотношение эритроцитов и гранулоцитов (норма 1:3–1:5)</td>
<td>1:1–1:2</td>
<td>1:1–1:2</td>
<td>1:1–5:1</td>
<td>1:1–1:2</td>
</tr>
<tr>
<td>Запасы железа в костном мозге</td>
<td>Отсутствуют</td>
<td>Присутствуют</td>
<td>↑</td>
<td>Присутствуют</td>
</tr>
<tr>
<td>Кольцевидные сидеробласты</td>
<td>Отсутствуют</td>
<td>Отсутствуют</td>
<td>Присутствуют</td>
<td>Отсутствуют</td>
</tr>
</tbody>
</table>

> – более распространено; ↑ – повышение; ↓ – снижение.
Как правило, начальная доза составляет 60 мг элементарного железа (325 мг сульфата железа) 1–2 раза в день. В более высоких дозах абсорбция не повышается, однако, увеличивается риск нежелательных явлений. Аскорбиновая кислота в форме таблеток (500 мг) или апельсиновый сок повышают абсорбцию железа, не вызывая при этом желудочно-кишечных расстройств. Препараты железа для парентерального применения имеют такую же терапевтическую эффективность, как пероральные препараты, однако они могут вызывать различные нежелательные явления: анафилактоидные реакции, сывороточную болезнь, тромбофлебит, болевой синдром. Они применяются у пациентов, которые не переносят пероральные препараты либо не могут их принимать, а также у пациентов, постоянно теряющих большие количества крови в связи с сосудистыми заболеваниями (такими как наследственная геморрагическая телеангиэктазия). Дозу железа, вводимого парентерально, должен определять врач-гематолог.

Ответ на лечение оценивается в серии измерений уровня гемоглобина до нормализации эритроцитарных показателей. В течение первых 2 нед наблюдается незначительный подъем уровня гемоглобина, затем его скорость возрастает до 0,7–1 г/нед до нормализации показателей. Аномия должна быть устранена в течение 2 мес. Неполный ответ на лечение свидетельствует о продолжении кровотечения, инфекционного или онкологического заболевания, недостаточного поступления железа с пищей или, крайне редко, мальабсорбции железа в ЖКТ.

СИДЕРОБЛАСТНЫЕ АНЕМИИ

Сидеробластные анемии обусловлены нарушением утилизации железа и обычно наблюдаются в рамках миелодиспластического синдрома. Характерно наличие нормоцитарной, нормохромной анемии с повышением показателя распределения эритроцитов по объему или микроцитарной, гипохромной анемии. Это сопровождается повышением содержания железа в сыворотке крови, а также повышением сатурации ферритина и трансферрина.

Сидеробластные анемии характеризуются недостаточной утилизацией железа в костном мозге со снижением синтеза гемоглобина, несмотря на наличие достаточного или повышенного количества железа (железонасыщенная анемия). К другим анемиям, обусловленным нарушением утилизации железа, относятся гемоглобинопатии, в первую очередь талассемии. Сидеробластные анемии обычно наблюдаются в рамках миелодиспластического синдрома, но могут также быть наследственными, обусловленными приемом определенных препаратов (хлорамфеникол, циклосерин, изониазид, пиразинамид) или воздействием токсинов (этанол и свинец). К развитию сидеробластной анемии может приводить недостаток пиридоксина. При этом наблюдается снижение продукции ретикулоцитов, гибель эритроцитов в костном мозге, эритролидная гиперплазия (или дисплазия) костного мозга. Хотя большая часть эритроцитов является гипохромной, некоторые эритроциты могут быть крупными и иметь нормохромные показатели. Сидеробластную анемию необходимо предполагать у пациентов с микроцитарной анемией или повышением показателя RDW, особенно в сочетании с повышением уровня сывороточного железа, сатурации ферритина и трансферрина. В мазке периферической крови выявляется диморфизм эритроцитов в костном мозге, эритролидная гиперплазия (или дисплазия) костного мозга. Хотя большая часть эритроцитов является гипохромной, некоторые эритроциты могут быть крупными и иметь нормохромные показатели; в данном случае вариабельность размеров эритроцитов (диморфизм) обычно отражена в повышении показателя распределения эритроцитов по объему (RDW).
для данной патологии парамикроларные митохондрии, содержащие большое количество железа. Часто встречаются другие признаки миелодисплазии, такие как хромосомные аномалии. Если причина сидеробластной анемии остается неустановленной, сыворотка крови исследуется на содержание свинца.

Элиминация токсина или препарата (особенно этилового спирта) может приводить к выздоровлению. В редких случаях врожденной патологии наблюдается ответ (неполный) на лечение пиридоксином в дозе 50 мг 3 раза в день. Дефицит пиридоксина восполняется путем дополнительного приема витамина В$_6$.

АНЕМИЯ ХРОНИЧЕСКОГО ЗАБОЛЕВАНИЯ

(анемия, обусловленная нарушением реутилизации железа)

Анемия хронического заболевания – это многофакторная анемия, часто сопровождающаяся дефицитом железа. Диагноз, как правило, основан на наличии хронического инфекционного, воспалительного или онкологического заболевания; микроцитарной или нормоцитарной анемии с пограничными показателями. При этом количество сывороточных рецепторов к трансферрину и уровень сывороточного ферритина являются промежуточными по сравнению с железодефицитной и сидеробластной анемией. Терапия направлена на лечение основного заболевания; если заболевание неизлечимо, назначается эритропоэтин.

Анемия хронического заболевания является второй по частоте причиной развития анемии во всем мире. На ранних этапах наблюдается нормоцитоз; со временем анемия приобретает микроцитарный характер. Основной проблемой является неспособность эритроидного ростка костного мозга к пролиферации в ответ на анемию.

Этиология

Этот тип анемии возникает как синдром в рамках хронического заболевания, чаще всего инфекционного, воспалительного (особенно РА), онкологического; однако аналогичный процесс происходит практически при любом остром инфекционном или воспалительном заболевании. Выделяют три патофизиологических механизма развития анемии:

■ Незначительное укорочение продолжительности жизни эритроцитов, обусловленное нежными причинами, у пациентов с онкологическими заболеваниями или хроническими грануломатозными инфекциями.
■ Нарушение эритропоэза в связи со снижением продукции ЭПО и ответа костного мозга на него.
■ Нарушение метаболизма внутриклеточного железа.

Ретикулоэндотелиальные клетки задерживают железо, полученное из старых эритроцитов, делая его недоступным для участия в синтезе гемоглобина. Таким образом, компенсация анемии путем повышения продукции эритроцитов становится невозможной.

Цитокины, синтезируемые макрофагами (IL-1β, фактор некроза опухолей-α, интерферон-β), у пациентов с инфекционными, воспалительными и онкологическими заболеваниями вызывают снижение продукции ЭРО или способствуют ему, а также ухудшают метаболизм железа.

Диагностика

■ Симптомы и признаки основного заболевания.
■ ОАК, сывороточное железо, ферритин, трансферрин, количество рецепторов к трансферрину.

Клинические данные обычно соответствуют основному заболеванию (инфекционному, воспалительному, онкологическому). Анемию хронического заболевания необходимо подозревать у пациентов с микроцитарной или нормоцитарной анемией с пограничными значениями показателей в сочетании с хроническими инфекционными, воспалительными или онкологическими заболеваниями. Если имеется подозрение на наличие анемии хронического заболевания, необходимо провести исследование уровня сывороточного железа, трансферрина, ферритина, рецепторов к трансферрину. Уровень гемоглобина обычно >8 г/дл при отсутствии дополнительных механизмов, способствующих развитию анемии (табл. 140–1). Если

...
Глава 140. Анемии, обусловленные нарушением эритропоэза

Помимо анемии хронического заболевания у пациента существует дефицит железа, сывороточный ферритин, как правило, <100 нг/мл. Так, при инфекционном, воспалительном или онкологическом заболевании уровень ферритина <100 нг/мл, это свидетельствует о наличии дефицита железа, существующего параллельно с анемией хронического заболевания. Тем не менее, поскольку сывороточный ферритин является маркером острых фаз воспаления, его подъем может быть ложным. Измерение количества сывороточных рецепторов к трансферрину позволяет лучше провести дифференциальную диагностику между дефицитом железа и анемией хронического заболевания при уровне сывороточного ферритина >100 нг/мл.

Лечение

- Лечение основного заболевания.
- Рекомбинантный ЭПО и препараты железа.

Наиболее важную роль играет лечение основного заболевания. Поскольку данный тип анемии обычно характеризуется легкой степенью тяжести, проведение гемотрансфузии, как правило, не требуется, возможно применение рекомбинантного ЭПО. Поскольку может наблюдаться снижение продукции ЭПО или резистентность костного мозга к нему, доза препарата может достигать 150−300 МЕ/кг подкожно 3 раза в неделю. Хорошим ответом на лечение считается подъем уровня гемоглобина >0,5 г/дл и уровень сывороточного ферритина <400 нг/мл после 2 недель лечения. Применение препаратов железа необходимо для обеспечения адекватного ответа на ЭПО. Тем не менее должен проводиться тщательный мониторинг уровня гемоглобина, поскольку при его повышении >12 г/дл могут наблюдаться нежелательные явления (венозные тромбоэмболии, инфаркт миокарда, смерть).

ГИПОПРОЛИФЕРАТИВНЫЕ АНЕМИИ

Гипопролиферативные анемии являются результатом дефицита ЭПО или снижения чувствительности к нему; наблюдается тенденция к нормоцитозу и нормохромии. Распространенными причинами данной патологии являются почечные, метаболические, эндокринные заболевания. Терапия включает в себя лечение основного заболевания, иногда существует необходимость в назначении ЭПО.

Снижение пролиферативной способности является распространенным механизмом развития анемии при почечных заболеваниях, нарушениях метаболизма, эндокринной недостаточности (гипотиреоз, гипопитуитаризм), потере белка. При этом наблюдается относительное или абсолютное снижение продукции ЭПО. При нарушениях метаболизма костный мозг также может утратить способность к адекватному ответу на ЭПО.

Анемия при заболеваниях почек. Недостаточная продукция ЭПО почками и тяжесть анемии зависит от выраженности почечной дисфункции; анемия наблюдается при снижении клиренса креатинина <45 мл/мин. Поражение почечных клубочков (амилоидоз, диабетическая нефропатия) обычно характеризуется развитием наиболее тяжелой анемии по сравнению со степенью экскреторной недостаточности.

Термин «анемия при заболеваниях почек» относится только к снижению синтеза ЭПО, однако существуют и другие механизмы, которые могут повышать ее тяжесть. При уремии наблюдается умеренно выраженный гемолиз, механизм которого до конца не установлен. Меньше распространенными причинами являются фрагментация эритроцитов (траumaticalная гемолитическая анемия) вследствие повреждения реноваскулярного эндотелия (при злокачественной гипертензии, мембранопролиферативном гломерулонефрите, узелковом полиартериите, острум кортикальном некрозе). Травматический гемолиз у детей может быть проявлением остrego, иногда смертельного заболевания под названием гемолитико-уремический синдром.

Диагностика основана на наличии почечной недостаточности в сочетании с нормоцитарной анемией, периферической ретикулоцитопенией, недостаточной эритроидной гиперплазией для данной степени анемии. Фрагментация эритроцитов, выявленная в мазке периферической крови, особенно в сочетании с тромбоцитопенией, свидетельствует о наличии травматического гемолиза.
Терапия направлена на улучшение функции почек и повышение продукции эритроцитов. При нормализации функции почек происходит постепенная коррекция анемии. У пациентов, находящихся на длительном гемодиализе, терапия выбора включает в себя назначение ЭПО в начальной дозе 50–100 МЕ/кг в/в или п/к 3 раза в неделю в сочетании с препаратами железа. Почти во всех случаях максимальное повышение количества эритроцитов достигается на 8–12 неделе лечения. Далее может применяться поддерживающая доза ЭПО (приблизительно 1/2 от начальной дозы) 1–3 раза в неделю. Потребность в гемотрансфузиях возникает редко. Необходим тщательный мониторинг ответа на лечение, чтобы избежать нежелательных эффектов, связанных с повышением уровня гемоглобина >12 г/дл.

Другие гипопролиферативные анемии. Клинические и лабораторные проявления других гипопролиферативных нормохромно-нормоцитарных анемий менее выражены, но имеют характеристики, сходные с анемией при заболеваниях почек. Механизм анемии при потере белка может быть общее нарушение метаболизма со снижением ответа костного мозга на ЭПО. Роль белка в гемопоэзе остается неустановленной.

АПЛАСТИЧЕСКАЯ АНЕМИЯ (гипопластическая анемия)

Апластическая анемия – нормохромная, нормоцитарная анемия, обусловленная снижением количества клеток – предшественников гемопоэза, что приводит к гипоплазии костного мозга, уменьшению количества эритроцитов, лейкоцитов, тромбоцитов. Симптоматика обусловлена развитием тяжелой анемии, тромбоцитопении (петехии, кровотечения), лейкопении (инфекции). Диагностика основана на выявлении панцитопении в периферической крови и отсутствия клеток-предшественников в костном мозге. Для лечения используют лошадиный антитимоцитарный глобулин и циклоспорин. Может быть полезным применение эритропоэтина, гранулоцит-макрофаг-колониестимулирующего фактора, а также трансплантация костного мозга.

Термин «апластическая анемия» включает в себя пангипоплазию костного мозга и сочетается с лейкопенией и тромбоцитопенией. В отличие от нее эритроидная апластическая поражения только эритроидного ростка. Оба заболевания являются достаточно редкими, однако апластическая анемия встречается чаще.

Эпиплозия

Истинная апластическая анемия (наиболее распространена у подростков и молодых взрослых) является идиопатической почти в 1/2 случаев. К установленным причинам заболевания относится воздействие определенных химических веществ (бензол, неорганические соединения мышьяка), радиации, лекарственных препаратов (противопротивопогонадные, антибиотики, НПВС, антиконвульсанты, ацетазолами, соли золота, пенициллины, хинакрин). Механизмы данного воздействия неизвестны, однако его основной считается селективная гиперчувствительность (возможно, генетического характера).

Анемия Фанкони – это крайне редкое заболевание, которое является наследственной формой апластической анемии, оно сопровождается костными аномалиями, микроцефалией, гипогонадизмом и коричневой пигментацией кожи. Заболевание возникает в детском возрасте при наличии хромосомных аномалий. Часто может иметь скрытое течение до возникновения определенных сопутствующих заболеваний (чаще острых инфекционных или воспалительных), вызывающих периферическую цитопению. После излечения сопутствующего заболевания показатели периферической крови нормализуются, несмотря на снижение массы костного мозга.

Парциальная эритроидная апластая может быть острым и хроническим. Острая эритроblastопения характеризуется краткосрочным исчезновением клеток – предшественников эритроэоза из костного мозга при различных острых вирусных заболеваниях (в особенности при парвовирусных инфекциях человека), чаще встречается у детей. Анемия сохраняется в течение длительного периода после излечения острых инфекций. Хроническая парциальная эритроидная апластая может быть обусловлена
гемолитическими состояниями, тимомами, аутоиммунными механизмами, реже – воздействием определенных лекарственных препаратов (транквилизаторов, антиконвульсантов), токсинов (органические фосфаты), дефицитом рибофлавина, хроническим лимфолейкозом. Анемия Даймонда – Блекфена, редкая врожденная форма апластической анемии, обычно возникает в раннем детском возрасте, но может встречаться и у взрослых. Анемия Даймонда – Блекфена может быть аномалиями костей пальцев рук и низкорослостью.

Симптомы и признаки
Хотя начало апластической анемии, как правило, постепенное, часто спустя несколько недель или месяцев после воздействия токсина, однако в некоторых случаях дебют заболевания может быть острым. Симптоматика варьирует в зависимости от тяжести панцитопении. Признаки анемии (к примеру, бледность) обычно являются ярко выраженными.

Тяжелая тромбоцитопения может сопровождаться образованием петехий и экхимозов, кровотечениями из десен, конъюнктивы и других тканей. Агранулоцитоз обычно приводит к возникновению жизнеугрожающих инфекций. Спленомегалия отсутствует до момента развития трансфузионного гемосидероза. Симптомы парциальной эритроидной аплазии обычно менее выражены и коррелируют со степенью тяжести анемии или основного заболевания.

Диагностика
■ ОАК.
■ Исследование костного мозга.
Апластическую анемию необходимо подозревать у пациентов, особенно молодых, с панцитопенией (количество лейкоцитов <1500/мкл, тромбоцитов <50000/мкл). Парциальную эритроидную аплазию (в т.ч. анемию Даймонда – Блекфена) необходимо подозревать у пациентов с наличием костных аномалий и нормоцитарной анемии в сочетании с нормальным количеством лейкоцитов и тромбоцитов. При наличии подозрения на другое заболевание должно быть выполнено исследование костного мозга.

Для апластической анемии характерны нормоцитоз и нормохромия эритроцитов (иногда макроцитоз с пограничными значениями показателей). Наблюдается снижение количества лейкоцитов, преимущественно гранулоцитов. Уровень тромбоцитов часто опускается ниже 50000/мкл. Ретикулоциты отсутствуют либо их количество резко снижено. Уровень сывороточного железа повышен. Клеточность костного мозга снижена. Для парциальной эритроидной аплазии характерно наличие нормоцитарной анемии, ретикулоцитопении, повышенного уровня сывороточного железа при нормальном количестве лейкоцитов и тромбоцитов. Клеточность костного мозга и индекс созревания могут быть нормальными, несмотря на отсутствие клеток – предшественников эритропоэза.

Лечение
■ Лошадиный антитимоцитарный глобулин, кортикостероиды, циклоспорин.
■ В некоторых случаях может потребоваться трансплантация гемопоэтических клеток.
■ Может применяться цитокиновая терапия.
■ При аплазии эритроидного ростка, обусловленной наличием тимомы, применяется хирургическое лечение.
При апластической анемии терапией выбора является лошадийный антитимоцитарный глобулин (АТГ) в дозе 10–20 мг/кг массы тела, предварительно разведенный в 500 мл изотонического раствора, препарат вводится в/в 1 раз в сутки (инфузия длится 4–6 часов) в течение 10 дней. Также применяются более короткие режимы. На терапию АТГ отвечают около 60% пациентов. Могут наблюдаться аллергические реакции и сывороточная болезнь; некоторые эксперты рекомендуют предварительное выполнение кожных проб (для определения аллергии к лошадиной сыворотке) и одновременное назначение кортикостероидов (преднизолон 40 мг/м² 1 раз в сутки в течение 7–10 дней или до исчезновения симптомов). Применение циклоспорина (5–10 мг/кг 1 раз в сутки) имеет аналогичную эффективность: ответ на лечение наблюдается приблизительно у 50% пациентов, не отвечающих на применение АТГ, что свидетельствует о различии механизмов
действия. Комбинация ATG и циклоспорина также является эффективной. Если апластическая анемия достигает тяжелой степени, отсутствует ответ на лечение ATG и циклоспорином, может применяться трансплантация костного мозга или цитокиновая терапия (эритропоэтин, гранулоцит-колониестимулирующий фактор, гранулоцит-макрофаг-колониестимулирующий фактор).

У молодых пациентов (особенно <30 лет) может быть эффективна аллогенная трансплантация гемопоэтических стволовых клеток, однако это требует наличия однояйцевого близнеца или HLA-совместимого сиблинга. При установлении данного диагноза все сиблинги пациента проходят исследование на HLA-совместимость. Поскольку гемотрансфузии повышают риск последующей трансплантации, переливание компонентов крови используется только при крайней необходимости.

Парциальная эритроидная аплазия успешно поддается лечению иммуносупрессантами (преднизолон, циклоспорин, циклофосфамид), особенно если существуют подозрения на наличие аутоиммунного механизма. Необходимо отметить, что парциальная эритроидная аплазия может быть обусловлена тимомой, состояние таких пациентов улучшается после тимэктомии. Для диагностики данной патологии и принятия решения о возможности хирургического лечения необходимо выполнение КТ.

АНЕМИЯ ПРИ МИЕЛОФТИЗЕ

Анемия при миелофтизе – нормоцитарная, нормохромная анемия, которая возникает при инфильтрации или замещении нормального костного мозга негемопоэтическими или аномальными клетками. Причинами могут быть опухоли, гранулематозные заболевания, болезни накопления липидов. Часто наблюдается фиброз костного мозга. Может развиваться спленомегалия. К характерным изменениям в периферической крови относятся анфизоцитоз, пойкилиоцитоз, избыточное количество клеток – предшественников эритропоэза и лейкоэоза. Диагноз обычно основан на результатах биопсии костного мозга. Применяются поддерживающая терапия и лечение основного заболевания.

Описательная терминология, используемая при данном типе анемии, может показаться запутанной. Миелофтиз, замещение костного мозга фиброзной тканью, может быть идиопатическим (первичным) или вторичным. Истинный миелофтиз – это дефект стволовых клеток, при котором фиброз является результатом других гемопоэтических событий. Миелосклероз – это формирование дополнительной костной ткани, которое иногда сопровождает миелофтиз. Миелоидная метаплазия, которая может сопровождать миелофтиз, независимо от его причин, приводит к образованию экстрамедуллярных очагов кроветворения в печени, селезенке, лимфатических узлах. Старый термин «идиопатическая миелоидная метаплазия» означает первичный миелофтиз с миелоидной метаплазией или без нее.

Этиология

Наиболее распространенной причиной является замещение костного мозга метастазами злокачественных опухолей (чаще молочной железы или простаты; реже почки, легкого, надпочечника или щитовидной железы); при этом имеется умеренно выраженная тенденция к образованию очагов экстрамедуллярного кроветворения. К другим причинам относятся миелопролиферативные заболевания (особенно поздние стадии истинной полицитемии), гранулематозные заболевания и болезни накопления (липидные). Миелофтиз может иметь место при всех вышеперечисленных состояниях.

К факторам, способствующим снижению продукции эритроцитов, относятся снижение количества функционирующей гемопоэтической ткани, метаболические нарушения, связанные с основным заболеванием, в некоторых случаях эритрофагоцитоз. Экстрамедуллярный гемопоз или разрыв костномозговых синусоидов может вызывать выход в кровоток незрелых клеток. Наличие эритроцитов аномальной формы часто приводит к повышению скорости их разрушения.

Симптомы и признаки

Миелоидная метаплазия может приводить к развитию спленомегалии, особенно у пациентов с болезнями накопления. В тяжелых случаях могут присутствовать симптомы анемии и основ-
глава 140. анемии, обусловленные нарушением эритропоза
1639
ного заболевания. Массивная спленомегалия может вызывать чувство давления в области жи-
вода, раннее насыщение пищей, боли в левом верхнем квадранте живота; может наблюдать-
ся гепатомегалия. Гепатоспленомегалия редко возникает при миелофиброзе, обусловленном
злокачественными опухолями.
диагностика
■ ОАК, эритроцитарные индексы, количество
ретикулоцитов, мазок периферической крови.
■ Исследование костного мозга.
Анемию, обусловленную миелофиброзом, необходимо подозревать у пациентов с нор-
моцитарной анемией, особенно при наличии спленомегалии или потенциального основного
заболевания. При наличии подозрения на дан-
ную патологию необходимо выполнить мазок
периферической крови: лейкоэритробластоз
(наличие в мазке незрелых миелоидных кле-
ток и ядросодержащих эритроцитов, таких
как нормобласт) свидетельствует о наличии
миелофиброза. Данный тип анемии обычно ха-
рактеризуется умеренной степенью тяжести,
нормоцитозом или незначительным макро-
цитозом. В морфологии эритроцитов может
наблюдаться резкая вариабельность размера
и формы (анизоцитоз и пойкилоцитоз). Количество
лейкоцитов также может быть различным.
Количество тромбоцитов часто снижено, они
имеют большие размеры и неправильную фор-
му. Часто встречается ретикулоцитоз; он может
быть обусловлен преждевременным выходом
ретикулоцитов из костного мозга или экстраме-
дуллярных очагов кроветворения, таким обра-
зом, он не всегда свидетельствует об усиленной
регенерации клеток крови.
Хотя исследование периферической крови
может иметь важное значение, диагностика, как
правило, основана на исследовании костного
мозга. Показаниями для данной процедуры
являются лейкоэритробластоз и спленоме-
галия неясной этиологии. Костный мозг плохо
поддается обычной аспирации; как правило,
требуется трепанобиопсия. Результаты вари-
руют в зависимости от основного заболевания.
Эритропоз в пределах нормы в некоторых
случаях может быть усилен. Однако продолжи-
tельность жизни эритроцитов часто снижена.
В селезенке и печени могут быть обнаружены
очаги кроветворения.
При случайно выполненной рентгенографии
можно обнаружить костные поражения (мие-
лосклероз), характерные для длительно суще-
ствующего миелофиброза, или другие костные
изменения (остеобластические или литические
поражения костей, обусловленные опухолью),
указывающие на причину анемии.
лечение
■ Лечение основного заболевания.
■ Гемотрансфузии, применение кортикостеро-
идов.
■ Гидроксимочевина.
■ Возможно применение талидомида.
Необходимо лечение основного заболе-
вания. В идиопатических случаях применяет-
ся поддерживающая терапия: эритропоэтин
(20 000–40 000 МЕ п/к 1–2 раза в неделю) и
кортикостероиды (преднизолон 10–30 мг 1 раз
в сутки), однако достигается лишь умеренный
ответ на лечение. Применение гидроксимочеви-
ны (500 мг 1 раз в день или через день) спо-
собствует уменьшению размеров селезенки и
нормализации количества эритроцитов у боль-
шей части пациентов, однако ответ наблюдается
лишь после 6–12 месяцев лечения. Применение
tалидомида (50–100 мг 1 раз в сутки вечером)
может обеспечить достаточный ответ на лече-
ние, однако данный препарат повышает риск
tромбозов и тяжелой утомляемости.
Мегалобластные
макроцитарные анемии
Мегалобластные анемии чаще всего являются след-
ствием дефицита витамина B12 и фолиевой кислоты.
Неэффективный гемопоэз оказывает влияние на все
клеточные ростки, но в особенности на эритроидный.
Диагностика, как правило, основана на данных ОАК и
анализе мазка периферической крови, в котором выяв-
ляется макроцитарная анемия, анкилоцитоз, пойкилоци-
тоз, а также крупные эритроциты овальной формы (ма-
кроовалоциты), гиперсегментация ядер нейтрофилов,
ретикулоцитоз. Терапия направлена на лечение
основного заболевания.
Врез 140–1. Немегалобластный макроцитоз

Большая часть макроцитарных анемий (MCV >100 фл/кл) относится к мегалобластным. Немегалобластный макроцитоз наблюдается при ряде клинических состояний, не все из которых достаточно хорошо изучены. Обычно у пациентов с макроцитозом присутствует анемия, однако она обусловлена другими механизмами, не связанными с макроцитозом.

Макроцитоз возникает при дефекте мембран эритроцитов у пациентов с нарушением холестерина, обусловленным хроническими заболеваниями печени. Мембрана эритроцитов приобретает свою форму в селезенке, после выхода клеток из костного мозга, незначительный макроцитоз может наблюдаться после спленэктомии, хотя эти изменения не сопровождаются анемией.

Макроцитами называют эритроциты увеличенных размеров (MCV >100 фл/кл). Макроцитоз может наблюдаться в ряде клинических ситуаций, не связанных с мегалобластозом и анемией. Макроцитоз может быть обусловлен наличием как мегалобластов, так и других эритроцитов увеличенных размеров (врез 140–1). Мегалобласты являются крупными клетками — предшественниками эритропоза, содержащими ядра с неконденсированным хроматином. Мегалобластоз предваряет развитие макроцитарной анемии.

Эпифизиология

Наиболее распространенной причиной мегалобластных состояний является дефицит или нарушение утилизации витамина В₁₂ или фолиевой кислоты. К другим причинам относятся прием определенных лекарственных препаратов (обычно противовоспалительных или иммуносупрессантов), которые нарушают синтез ДНК, и редкие метаболические нарушения (наследственная оротацидурия); в некоторых случаях этиология остается неустановленной.

Патофизиология

Мегалобластные состояния являются результатом нарушения синтеза ДНК. Синтез РНК продолжается, при этом образуются крупные клетки с большими ядрами. Наблюдается нарушение синтеза клеток всех ростков, при этом созревание цитоплазмы опережает созревание ядра; это приводит к появлению мегалобластов в костном мозге, прежде чем они появляются в периферической крови, а также к гибели клеток в костном мозге и неэффективности эритропоза, что сопровождается гипербилирубинемией и гиперурикемией. Поскольку нарушение гемопоза охватывает все клеточные ростки, развивается ретикулоцитопения, а также (на поздних стадиях) лейкопения и тромбоцитопения. В кровотоке появляются крупные овальные эритроциты (макроовалоциты). Часто наблюдается гиперсегментация полиморфоядерных нейтрофилов; механизм данного явления неизвестен.

Симптомы и признаки

Анемия развивается постепенно и может протекать бессимптомно, пока не достигнет тяжелой степени. Дефицит витамина В₁₂ может сопровождаться неврологическими проявлениями, в частности периферической нейропатией, деменцией, подострая комбинированной дегенерацией спинного мозга. Дефицит фолиевой кислоты также может вызывать развитие диареи и глюссита. У многих пациентов с дефицитом фолиевой кислоты может наблюдаться истощение, для которого особенно характерно западение тканей височной области.
Глава 141. Гемолитические анемии

Диагностика
- ОАК, эритроцитарные индексы, количество ретикулоцитов, мазок периферической крови.
- В некоторых случаях может потребоваться исследование костного мозга.

Мегалобластную анемию необходимо подозревать у всех пациентов с макроцитарной анемией. Диагностика, как правило, основана на исследовании мазка периферической крови. В развёрнутой стадии заболевания наблюдается макроцитарная анемия со значением MCV >100 фл/кл. В мазке периферической крови выявляется макроэритроцитоз, анизоцитоз, пойкилоцитоз. Характерно увеличение показателя распределения эритроцитов по объему. Часто встречаются тельца Хауэлла – Жолли (остаточные фрагменты ядра). Присутствует ретикулоцитопения.

Диагностика, как правило, основана на исследовании мазка периферической крови. В развёрнутой стадии заболевания наблюдается макроцитарная анемия со значением MCV >100 фл/кл. В мазке периферической крови выявляется макроэритроцитоз, анизоцитоз, пойкилоцитоз. Характерно увеличение показателя распределения эритроцитов по объему. Часто встречаются тельца Хауэлла – Жолли (остаточные фрагменты ядра). Присутствует ретикулоцитопения.

Лечение зависит от причины заболевания. Для получения информации о лечении дефицита фолиевой кислоты и витамина В12 необходимо отмена препаратов, вызывающих развитие мегалобластных состояний, либо снижение их дозы.

МИЕЛОДИСПЛАЗИЯ И АНЕМИЯ, ОБУСЛОВЛЕННАЯ НАРУШЕНИЕМ ТРАНСПОРТА ЖЕЛЕЗА

При миелодиспластическом синдроме анемия, как правило, резко выражена. Она может быть микроцитарной или нормочрно-нормоцитарной, обычно сопровождается диморфизмом (крупные и мелкие клетки) популяции циркулирующих клеток. При исследовании костного мозга выявляется снижение эритропоэтической активности, мегалобластоидные и диспластические изменения, иногда повышение количества кольцевидных сидеробластов. Лечение аналогично сидеробластным анемиям.

Анемия, обусловленная нарушением транспорта железа (атрансферринемия) встречается крайне редко. Ее причина заключается в том, что железо не может перемещаться из мест своего накопления (клетки слизистых оболочек, печени) к клеткам – предшественникам эритропоза. Предполагаемым механизмом заболевания является отсутствие трансферрина или его молекулярный дефект. Помимо анемии развивается выраженный гемосидероз лимфоидной ткани, особенно расположенной вдоль желудочно-кишечного тракта.

Гемолитические анемии

По окончании срока нормальной продолжительности жизни (около 120 дней) эритроциты удаляются из кровотока. При наличии гемолиза деструкция происходит преждевременно, что обусловливает укорочение продолжительности жизни эритроцитов (<120 дней). Анемия развивается, когда синтез эритроцитов в костном мозге больше не может обеспечить длительную компенсацию укорочения продолжительности их жизни; это состояние называется гемолитической анемией. Если костный мозг способен ее компенсировать, данное состояние называется компенсированной гемолитической анемией.
Этиология
Гемолиз может быть обусловлен как аномалиями эритроцитов, так и внешними воздействиями на них (табл. 141–1).

Внешние причины. Большинство внешних причин гемолиза имеют приобретенный характер; эритроциты пациента имеют нормальное строение, об этом свидетельствует разрушение в кровотоке как аутологичных клеток, так и клеток донора. К внешним причинам относятся ретикулоэндотелиальная гиперактивность (гиперспленизм), иммунологические отклонения (аутоиммунная гемолитическая анемия, изоиммунная гемолитическая анемия), механическое повреждение (травматическая гемолитическая анемия), некоторые инфекции. Инфекционные агенты могут вызывать развитие гемолитической анемии путем прямого токсического воздействия (Clostridium perfringens, α- и β-гемолитические стрептококки, менингококки), инвазии и деструкции эритроцитов (плазмодии, bartonеlлы).

Внутренние причины. Внутренними причинами гемолиза являются нарушения одного или более компонентов или функций эритроцитов: структуры мембран, клеточного метаболизма, строения гемоглобина. К ним относятся наследственные или приобретенные дефекты клеточных мембран (к примеру, сфероцитоз), нарушения эритропоэтического метаболизма (недостаточность глюкозо-6-фосфатдегидрогеназы), гемолобинопатии (серповидноклеточная анемия, талассемии). Гемолитические анемии могут быть обусловлены количественными и функциональными аномалиями определенных белков мембран эритроцитов (α- и β-спектрина, белка 4.1, F-актина, анкирина).

Патофизиология
Гемолиз может иметь острый, хронический или эпизодический характер. Хронический гемолиз может осложниться апластическим кризом (временное прекращение эритропоза), обычно он обусловлен инфекциями, чаще паровирусными. Гемолиз может быть внесосудистым, внутрисосудистым или комбинированным.

Нормальный процессинг эритроцитов.
Стареющие эритроциты утрачивают мембрану и элиминируются из кровотока в основном фагоцитирующими клетками селезенки, печени, костного мозга, ретикулоэндотелиальной системой. Разрушение гемоглобина в этих клетках обусловлено в первую очередь наличием ге-
Глава 141. Гемолитические анемии

1643

моксигеназной активности. Железо сохраняется и реутилизируется, а гем разрушается с образованием билирубина, который в печени конъюгируется с глюкуроновой кислотой и выводится с желчью.

Внесосудистый гемолиз. В большинстве случаев гемолиз является внесосудистым, он наблюдается при повреждении аномальных эритроцитов и удалении их из кровотока при участии клеток селезенки, печени, костного мозга. Сходный процесс также происходит при элиминации старых эритроцитов. Гемолиз, происходящий в селезенке, как правило, обусловлен незначительными аномалиями строения эритроцитов или наличием тепловых антител на поверхности клеток. При увеличении селезенки может наблюдаться разрушение даже нормальных эритроцитов. Эритроциты с выраженными аномалиями строения либо имеющие холодовые антитела и фракции комплемента на своей поверхности разрушаются непосредственно в кровотоке либо в печени, где возможно эффективное удаление поврежденных клеток в связи с хорошим кровоснабжением.

Внутрисосудистый гемолиз. Внутрисосудистый гемолиз является существенной причиной преждевременного разрушения эритроцитов и обычно наблюдается при тяжелых повреждениях клеточных мембран различной этиологии. Данный тип гемолиза может быть обусловлен в т.ч. аутоиммунной реакцией, прямой травмой (маршевая гемоглобинурия), гемодинамическим ударом (при наличии дефектов искусственных клапанов сердца), воздействием токсинов (клостридиальная интоксикация, укус змеи).

Внутрисосудистый гемолиз приводит к развитию гемоглобинемии в тех случаях, когда количество высвобождаемого гемоглобина превышает гемоглобинсвязывающую способность белка гаптоглобина, который в норме присутствует в плазме в концентрации около 1,0 г/л. При наличии гемоглобинемии свободные димеры гемоглобина фильтруются в мочу и реабсорбируются в клетках почечных канальцев; когда способность к реабсорбции превышена, возникает гемоглобинурия. В канальцевых клетках железо включается в синтез гемосидерина; часть железа используется для реутилизации, остальное количество попадает в мочу в связи с перегрузкой канальцевых клеток.

Последствия гемолиза. Когда конверсия гемоглобина в билирубин превышает конъюгационную и экскреторную способность печени, развивается неконъюгированная билирубинемия (обусловленная повышением непрямого билирубина) и желтуха. Вследствие катаболизма билирубина повышается содержание стеробилина в кале, уробилиногена в моче, иногда возникает холелитиаз.

Костный мозг отвечает на снижение количества эритроцитов усилиением их продукции и вывобождения, что приводит к ретикулоцитозу.

Симптомы и признаки

Системные проявления аналогичны другим анемиям и включают следующие симптомы: бледность, утомляемость, головокружение, возможна гипотензия. Гемолитический криз (острый, тяжелый гемолиз) встречается редко; он может сопровождаться ознобом, лихорадкой, болью в спине и животе, пространией, шоком. При тяжелом гемолизе возникают желтуха и спленомегалия. При гемоглобинурии моча приобретает красную или красновато-коричневую окраску.

Диагностика

■ Мазок периферической крови, количество ретикулоцитов, сывороточный билирубин, ЛДГ, АлАТ.
■ Иногда проводится измерение содержания гемосидерина в моче, гаптоглобина в сыворотке крови.
■ Реже проводится измерение времени жизни эритроцитов с помощью радиоизотопных методов.

Гемолиз необходимо подозревать у пациентов с анемией и ретикулоцитозом, особенно при наличии спленомегалии или другой возможной причины. При подозрении на данную патологию выполняется мазок периферической крови, Мазок периферической крови, количество ретикулоцитов, сывороточный билирубин, ЛДГ, АлАТ. Иногда проводится измерение содержания гемосидерина в моче, гаптоглобина в сыворотке крови. Реже проводится измерение времени жизни эритроцитов с помощью радиоизотопных методов. Гемолиз необходимо подозревать у пациентов с анемией и ретикулоцитозом, особенно при наличии спленомегалии или другой возможной причины. При подозрении на данную патологию выполняется мазок периферической крови, Мазок периферической крови, количество ретикулоцитов, сывороточный билирубин, ЛДГ, АлАТ. Иногда проводится измерение содержания гемосидерина в моче, гаптоглобина в сыворотке крови. Реже проводится измерение времени жизни эритроцитов с помощью радиоизотопных методов.
Морфологические аномалии эритроцитов реже являются диагностическими критериями, однако они часто свидетельствуют о причине гемолиза (табл. 141–2). К данным, позволяющим предполагать гемолитическую анемию, относятся повышение уровня ЛДГ и непрямого билирубина в сыворотке крови при нормальном значении АлАТ, наличие уробилиногена в моче. Наличие внутрисосудистого гемолиза можно предполагать при обнаружении в мазке периферической крови фрагментов эритроцитов (шистоцитов) и снижении сывороточного уровня гаптоглобина, которое тем не менее также может быть обусловлено гепатоцеллюлярной дисфункцией, в то время как повышение уровня гаптоглобина наблюдается при системном воспалении. Наличие внутрисосудистого гемолиза также можно предполагать по результатам исследования содержания гемосидерина в моче. Гемоглобинурия, а также гематурия и миоглобинурия, характеризуется положительным бензидиновым тестом (по экспресс-полоске); дифференциальная диагностика гемолиза и гематурии может быть основана на отсутствии эритроцитов при микроскопическом исследовании мочи. Кроме того, свободный гемоглобин придает плазме красновато-коричневый цвет, что часто может быть заметно при центрифугировании крови; миоглобин данным свойством не обладает.

Хотя наличие гемолиза, как правило, может быть установлено по этим простым критериям, окончательный диагноз основан на определении срока жизни эритроцитов путем проведения радиоизотопного исследования (к примеру, с радиоактивным хромом 51Cr). Путем измерения продолжительности жизни меченых эритроцитов можно установить факт гемолиза, а также идентифицировать место их разрушения с помощью расчета площади поверхности тела. Тем не менее данный метод применяется редко.

После подтверждения наличия гемолиза необходимо выявить его специфическую причину. Применяются следующие методы сужения дифференциального диагноза гемолитических анемий: учет факторов риска (географический регион, наследственность, сопутствующие заболевания), выявление спленомегалии, выполнение прямого антиглюбулинного теста (прямая проба Куббса) и мазка периферической крови; в большинстве случаев будут наблюдаться отклонения как минимум одного из данных показателей, что определит тактику дальнейшего исследования (например, наличие внутри- или внеклеточных имплантатов).

Лечение
Лечение зависит от специфического механизма гемолиза. При гемоглобинурии и гемосидеринурии необходимо проведение заместительной терапии пробы Куббса и мазка периферической крови; в большинстве случаев будут наблюдаться отклонения как минимум одного из данных показателей, что определит тактику дальнейшего исследования (для установления причины гемолиза), которое может включать следующие лабораторные методы:
- количественный электрофорез гемоглобина;
- анализ ферментов эритроцитов;
- флоуцитометрия;
- выявление холодовых агглютининов;
- осмотическая резистентность.

Хотя существуют методы, позволяющие отличить внутрисосудистый гемолиз от внеклеточного, иногда их достаточно тяжело разграничить. При разрушении эритроцитов обычно вовлечены оба механизма, хотя и в различной степени.
препаратами железа. На начальных этапах лечения аутоиммунного гемолиза, обусловленном наличием тепловых антител, эффективны кортикостероиды. Многократные гемотрансфузии могут вызывать избыточную аккумуляцию железа в организме, что требует применения хелатной терапии. В некоторых ситуациях необходимо выполнение спленэктомии, особенно если разрушение эритроцитов в селезенке является основной причиной гемолиза. По возможности спленэктомия выполняется через 2 недели после иммунизации вакцинами против пневмококка, гемофильной палочки и менингококка. При болезни холодовых антител пациенту рекомендуется находиться в тепле. При длительно существующем гемолизе необходима заместительная терапия фолиевой кислотой.

АУТОИММУННАЯ ГЕМОЛИТИЧЕСКАЯ АНЕМИЯ

Аутоиммунная гемолитическая анемия обусловлена аутоантителами, которые реагируют с эритроцитами при температуре ≥37 °C (гемолитическая анемия с тепловыми антителами) или <37 °C (болезнь холодовых антител). Тип гемолиза обычно внесосудистый. Прямой антиглобулиновый тест (проба Кумбса) позволяет установить диагноз и предположить причину. Лечение зависит от причины и может включать применение кортикостероидов, внутривенных иммуноглобулинов, иммуносупрессантов, спленэктомию, также требуется отказ от гемотрансфузий, отмена некоторых препаратов.

Этиология

Гемолитическая анемия, обусловленная тепловыми антителами. Гемолитическая анемия с тепловыми антителами является наиболее распространенной формой аутоиммунной гемолитической анемии (АИГА); она чаще встречается среди женщин. Тепловые антитела, как правило, вступают в реакцию при температуре ≥37 °C. Они могут образовываться спонтанно либо как проявление определенных заболеваний (СКВ, лимфома, хронический лимфолейкоз). Некоторые препараты (к примеру, α-метилдопа, леводопа — табл. 141–3) стимулируют продукцию аутоантител к Rh-антигенам (αАИГА, ассоциированная с применением α-метилдопы). Другие препараты...
стимулируют продукцию аутоантител к мембранному комплексу антибиотик – эритроцит как часть транзиторного гаптенового механизма; гаптен может быть стабильным (высокие дозы пенициллина, цефалоспорины) или нестабильным (хинидин, сульфаниламиды).

При гемолитической анемии, обусловленной тепловыми антителами, гемолиз происходит в основном в селезенке. Он часто достигает тяжелой степени и может приводить к летальному исходу. Большая часть тепловых аутоантител относится к IgG. Они являются панагглютининами и чаще всего характеризуются ограниченной специфичностью.

Болезнь холодовых агглютининов. Болезнь холодовых агглютининов (болезнь холодовых антител) обусловлена аутоантителами, которые вступают в реакцию при температуре <37 °C. Иногда они образуются при инфекционных заболеваниях (особенно часто при микоплазменной пневмонии или инфекционном мононуклеозе), лимфопролиферативных состояниях; около 1/2 всех случаев (в основном у пожилых) относятся к идиопатическим. При инфекционном генезе существует тенденция к оструму течению, в то время как для идиопатического заболевания характерно хроническое течение. Наблюдается преимущественно вне-сосудистый гемолиз, который осуществляется мононуклеарной фагоцитарной системой печени. Анемия, как правило, не достигает тяжелой степени (Hb >7,5 г/дл). Холодовые аутоагглютинины обычно относятся к IgM. Повышение температуры (приближение к нормальной теп-
пературе тела), при которой данные антитела реагируют с эритроцитами, усиливает гемолиз.

Пароксизмальная холодовая гемоглобинурия. Пароксизмальная холодовая гемоглобинурия (ПХГ, синдром Доната – Ландштейнера) относится к редкому типу болезни холодовых аглютининов. Гемолиз возникает при воздействии холода, даже локальном (употребление холодных напитков, мытье рук в холодной воде). IgG-аутогемолизин связывается с эритроцитами при низкой температуре и вызывает внутрисосудистый гемолиз при последующем нагревании. Данное заболевание чаще всего развивается после перенесенной неспецифической вирусной инфекции, однако может возникать и на фоне полного здоровья. Наблюдается у некоторых пациентов с врожденным или приобретенным сифилисом. Тяжесть анемии и скорость ее развития варьирует, может наблюдаться фульминантное течение.

Симптомы и признаки

Симптомы гемолитической анемии с тепловыми антителами обусловлены анемией. При тяжелом течении могут наблюдаться лихорадка, боль в груди, обмороки, сердечная недостаточность. Характерна легкая спленомегалия.

Болезнь холодовых аглютининов манифестирует как острая или хроническая гемолитическая анемия. Могут присутствовать другие проявления повышенной холодовой чувствительности (акроцианоз, синдром Рейно, окклюзивные поражения, ассоциированные с холодом). К симптомам ПХГ относятся следующие проявления: сильная боль в спине и ногах, головная боль, рвота, диарея, выделение мочи темно-коричневого цвета. Может присутствовать гепатоспленомегалия.

Диагностика

- Спектр исследований для выявления гемолитической анемии (мазок периферической крови, количество ретикулоцитов, иногда содержание гемосидерина в моче, гаптоглобина в сыворотке крови).
- **Прямой антиглобулиновый тест.**

АИГА необходимо подозревать у пациентов с гемолитической анемией, особенно при тяже-
Раздел 12. Гематология и онкология

отношении диагностики АИГА; ложноотрицательные результаты могут наблюдаться в том случае, если данные антитела относятся к классу IgA или IgM либо их плотность крайне низкая. Степень выраженности реакции при проведении прямого антиглобулинового теста коррелирует с количеством молекул IgG или С3, связанных с эритроцитарной мембраной, наблюдается агглютинация – результат положительный. Он свидетельствует о наличии антиэритроцитарных аутоантител (в том случае, если в течение последних 3 месяцев не проводилась гемотрансфузия), аллоантител к донорским эритроцитам (обычно возникают при острой или остроточенной гемолитической реакции), лекарственно-индукционных антиэритроцитарных антител.

После установления диагноза АИГА с помощью пробы Кумбса необходимо дальнейшее обследование для проведения дифференциальной диагностики между гемолитической анемией с тепловыми антителами и болезнью холодовых агглютининов. Также необходимо установить механизм иммунного ответа для гемолитической анемии, обусловленной тепловыми антителами. Несмотря на это можно сделать путем наблюдения за прямой антиглобулиновой реакцией. Возможны три варианта.

Рис. 141–3. Прямая проба Кумбса. Прямая проба Кумбса используется для установления наличия антиэритроцитарных антител (IgG) или компонента (C3) на мембранах эритроцитов. Эритроциты пациента инкубируют с антителами к человеческому IgG и C3. При наличии IgG или C3, связанных с эритроцитарной мембраной, наблюдается агглютинация – результат положительный. Он свидетельствует о наличии антиэритроцитарных аутоантител (в том случае, если в течение последних 3 месяцев не проводилась гемотрансфузия), аллоантител к донорским эритроцитам (обычно возникают при острой или остроточенной гемолитической реакции), лекарственно-индукционных антиэритроцитарных антител.

Эритроциты с IgG (γ) или C3 (C) на поверхности мембраны

Инкубация с антителами человека Ig (χ) и C3 (C)

Агглютинация (положительная проба Кумбса)

По данным, прямая антиглобулиновая реакция может дать следующие результаты:

1. **Реакция положительна для анти-IgG и отрицательна для анти-C3.** Данный вариант встречается при идиопатической и лекарственной α-метилдопе АИГА, также он обычно характерен для гемолитической анемии, обусловленной наличием тепловых антител.

2. **Реакция положительна для анти-IgG и анти-C3.** Данный вариант встречается при СКВ и идиопатической АИГА, также он обычно характерен для гемолитической анемии, обусловленной наличием тепловых антител. При лекарственно-индукционной анемии данный вариант не наблюдается.

После установления диагноза АИГА с помощью пробы Кумбса необходимо дальнейшее обследование для проведения дифференциально-диагностической диагностики между гемолитической анемией с тепловыми антителами и болезнью холодовых агглютининов. Также необходимо установить механизм иммунного ответа для гемолитической анемии, обусловленной тепловыми антителами. Часто это можно сделать путем наблюдения за прямой антиглобулиновой реакцией. Возможны три варианта.

Реакция положительна для анти-IgG и отрицательна для анти-C3. Данный вариант встречается при идиопатической и лекарственной α-метилдопе АИГА, также он обычно характерен для гемолитической анемии, обусловленной наличием тепловых антител.

Реакция положительна для анти-IgG и анти-C3. Данный вариант встречается при СКВ и идиопатической АИГА, также он обычно характерен для гемолитической анемии, обусловленной наличием тепловых антител. При лекарственно-индукционной анемии данный вариант не наблюдается.

Эритроциты с IgG (γ) или C3 (C) на поверхности мембраны

Инкубация с антителами человека Ig (χ) и C3 (C)

Агглютинация (положительная проба Кумбса)
Глава 141. Гемолитические анемии

Гемолитические анемии, обусловленные тепловыми антителами. При лекарственно-индуктированной гемолитической анемии, обусловленной тепловыми антителами, отмена лекарственного препарата снижает скорость гемолиза. При дАИГА, обусловленной приемом α-метилдопы, гемолиз обычно прекращается в течение 3 недель; тем не менее положительная проба Кумбса может сохраняться >1 года. При гаптенопосредованной дАИГА гемолиз прекращается после элиминации препарата из плазмы крови. При лекарственно-индуктированном гемолизе кортикостероиды оказывают лишь незначительный эффект; в данном случае более эффективны инфузии иммуноглобулинов.

Кортикостероиды (преднизон 1 мг/кг 1 раз в сутки) или в более высоких дозах) относятся к терапии выбора при идиопатической дАИГА, обусловленной тепловыми антителами. При крайне тяжелом гемолизе рекомендована вводная доза 100–200 мг. У большинства пациентов отмечается хороший ответ на лечение, приблизительно в 1/3 случаев он сохраняется после 12–20 недель терапии. При стабилизации количества эритроцитов кортикостероиды оказывают лишь слабый эффект; в данном случае более эффективны инфузии иммуноглобулинов.

Кортикостероиды (преднизон 1 мг/кг 1 раз в сутки) или в более высоких дозах) относятся к терапии выбора при идиопатической дАИГА, обусловленной тепловыми антителами. При крайне тяжелом гемолизе рекомендована вводная доза 100–200 мг. У большинства пациентов отмечается хороший ответ на лечение, приблизительно в 1/3 случаев он сохраняется после 12–20 недель терапии. При стабилизации количества эритроцитов кортикостероиды оказывают лишь слабый эффект; в данном случае более эффективны инфузии иммуноглобулинов.

Если есть подозрение на наличие ПХГ, выполняется тест Доната – Ландштейна, который является специфичным для ПХГ. Рекомендуется обследование на сифилис.

Лечение

При лекарственно-индуктированной гемолитической анемии, обусловленной тепловыми антителами, необходима отмена лекарственного препарата, иногда может потребоваться внутривенное введение иммуноглобулинов.

При идиопатической гемолитической анемии, обусловленной тепловыми антителами, необходимо назначение кортикостероидов.

При болезни холодовых агглютининов необходимо избегать переохлаждения.

Лечение зависит от специфического механизма гемолиза.
Болезнь холодовых агглютининов. При остром течении заболевания лечение в основном поддерживающее, поскольку анемия может носить самоограничивающийся характер. При хроническом течении контроль анемии часто обеспечивается лечением основного заболевания. Тем не менее при идиопатическом хроническом заболевании анемия легкой степени (Hb 9–10 г/дл) может сохраняться в течение всей жизни. Избегание воздействия холода также приводит к значительному улучшению. Спленэктомия неэффективна. Эффективность иммуносупрессантов умеренная. Гемотрансфузии должны выполняться осторожно, с предварительным нагреванием крови. Поскольку аутологические эритроциты уже имеют устойчивость к аутоантителам, их продолжительность жизни выше, чем донорских клеток, что ограничивает эффективность гемотрансфузии.

Пароксизмальная ночная гемоглобинурия

Пароксизмальная ночная гемоглобинурия (ПНГ) — редкое заболевание, которое характеризуется внутрисосудистым гемолизом и гемоглобинурией, которые усиливаются во время сна. Наблюдаются лейкопения и тромбоцитопения с эпизодическими кризами. Для верификации диагноза используется флоуцитометрия. Лечение поддерживающее.

ПНГ наиболее часто встречается у мужчин 20–30 лет, но может наблюдаться у лиц любого пола и возраста.

Этиология

ПНГ обусловлена приобретенной генетической мутацией, связанной с дефектом мембран стволовых клеток и их потомков: эритроцитов, лейкоцитов и тромбоцитов. Это сопровождается повышенной чувствительностью к нормальной фракции С3, содержащейся в плазме крови, стойкому внутрисосудистому разрушению эритроцитов, снижению продукции лейкоцитов и тромбоцитов в костном мозге. Дефект заключается в отсутствии гликозил-фосфатидил-инозитольного фиксатора мембранных белков и обусловлен аномалией гена PIG-A, локализованного в Х-хромосоме.

Патофизиология

Длительная потеря гемоглобина с мочой может привести к дефициту железа в организме. Пациенты имеют выраженную предрасположенность к венозным и артериальным тромбозам, включая синдром Бадда – Киари. Тромбозы обычно имеют летальный исход. У некоторых пациентов с ПНГ развиваются апластическая анемия, а у некоторых пациентов с апластической анемией может развиваться ПНГ.

Кризы могут быть спровоцированы инфекцией, приемом препаратов железа, вакцинацией, менструацией. При этом наблюдается боль в животе и пояснице, а также симптомы тяжелой анемии; характерна массивная гемоглобинурия и спленомегалия.

Диагностика

■ Флоуцитометрия.
■ Возможно выполнение теста кислотного гемолиза (проба Хема).

ПНГ необходимо предполагать у пациентов с типичными симптомами анемии или нормоцитарной анемии неясного генеза в сочетании с признаками внутрисосудистого гемолиза, особенно при наличии лейкопении или тромбоцитопении. При подозрении на ПНГ на первом этапе, как правило, выполняется сахарная проба; она основана на усилении гемолиза С3-зависимых систем в изотонических растворах с низкой ионной силой. Данный метод исследования прост в выполнении и обладает достаточной чувствительностью. Тем не менее он неспецифичен; положительный результат требует подтверждения другими методами. Наиболее чувствительным и специфическим тестом является определение отсутствия специфических мембранных белков
Глава 141. Гемолитические анемии

1651

в эритроцитах или лейкоцитах (CD59 и CD55) с помощью флоуцитометрии. Альтернативой является тест кислотного гемолиза (проба Хема). Гемолиз, как правило, возникает при добавлении HCl к образцу крови, последующей инкубации в течение 1 часа и центрифугирования. Исследование костного мозга не требуется, однако оно может выполняться с целью исключения других заболеваний. В таком случае обычно выявляется гипоплазия костного мозга. Во время кризов наблюдается массивная гемоглобинурия, также моча может содержать гемосидерин.

Лечение

- Поддерживающая терапия.
- Возможно применение моноклональных антител.

Лечение в основном симптоматическое. Тем не менее существует новый препарат на основе моноклональных антител акулизумаб, он ингибирует терминальный компонент комплемента, снижая потребность в гемотрансфузиях, риск тромбоэмболий и степень выраженности симптоматики. К поддерживающей терапии относится применение кортикостероидов, андрогенов, препаратов железа и фолиевой кислоты, в некоторых случаях могут использоваться гемотрансфузия и трансплантация стволовых клеток. Эмпирическое применение кортикостероидов (преднизон 20–40 мг 1 раз в сутки) позволяет контролировать заболевание и стабилизировать количество эритроцитов более чем у 50% пациентов. В некоторых случаях для стимуляции гемопоэза могут применяться андрогены и рекомбинантный эритропоэтин.

Травматическая гемолитическая анемия

(микроангиопатическая гемолитическая анемия)

Травматическая гемолитическая анемия сопровождается внутрисосудистым гемолизом, обусловленным избыточной деформацией эритроцитов или турбулентностью кровотока.

Травма может локализоваться вне сосудистого русла, например при повреждениях скелета, повторяющихся ударами нижних конечностей (маршевая гемоглобинурия), занятиях карабином или боксом. Она может быть связана с работой сердца против градиента давления, как, например, при аортальном стенозе с кальцификацией или наличии дефектного протеза аортального клапана. Травматизация может происходить в артериолах при тяжелой (особенно злокачественной) гипертензии, некоторых видах злокачественных опухолей, узелковом полиартерите, а также в концевых артериолах при наличии отложений фибрина, обусловленных тромботической тромбоцитопенической пурпурой и синдромом диссеминированного внутрисосудистого свертывания. Травматизация приводит к появлению в крови деформированных эритроцитов (шистоцитов) треугольной или шлемообразной формы. Для диагностики используется анализ мазка периферической крови. Образование мелких шистоцитов сопровождается снижением значения MCV и повышенiem показателя распределения эритроцитов по объему (т.е. в наличии анизоцитоза).

Терапия направлена на лечение основного заболевания. В некоторых случаях к гемолитической анемии может присоединяться железодефицитная, которая развивается в результате хронической гемосидеринурии. При этом наблюдается ответ на препараты железа.

Наследственный сфероцитоз и наследственный эллиптоцитоз

Наследственный сфероцитоз и наследственный эллиптоцитоз относятся к врожденной патологии мем-
Раздел 12. Гематология и онкология

Наследственный сфероцитоз (хроническая семейная желтуха; врожденная гемолитическая желтуха; семейный сфероцитоз, сфероцитарная анемия) – это аутосомно-доминантное заболевание с различной генетической пенетрантностью. Оно характеризуется наличием гемолиза эритроцитов сферической формы и анемии.

Наследственный эллипсоцитоз (овалоцилотоз) – это редкое аутосомно-доминантное заболевание, при котором эритроциты имеют овальную или эллиптическую форму. Гемолиз обычно отсутствует либо выражен незначительно, анемия отсутствует либо характеризуется легкой степенью тяжести; часто определяется спленомегалия.

Патофизиология
При обоих заболеваниях эритроцитарные аномалии обусловлены патологическими изменениями структуры мембраных белков. При наследственном сфероцитозе поверхность клеточной мембраны уменьшается диспропорционально количеству внутриклеточного содержимого. Уменьшение клеточной поверхности сопровождается нарушением пластичности эритроцитов, необходимой для прохождения микроциркуляторного русла селезенки, это приводит к внутриселезеночному гемолизу. При наследственном эллипсоцитозе генетические мутации приводят к ослаблению цитоскелета клетки и ее деформации. Патологические формы эритроцитов захватываются и разрушаются в селезенке.

Симптомы и признаки
Симптомы и признаки наследственного сфероцитоза обычно выражены умеренно, при этом анемия может быть настолько хорошо компенсирована, что не диагностируется до возникновения интеркуррентной вирусной инфекции, которая сопровождается транзиторным снижением продукции эритроцитов, как при апластическом кризе. Тем не менее, данные эпизоды характеризуются самоограничивающимся течением и разрешаются после излечения сопутствующей инфекции. В тяжелых случаях развивается умеренно выраженная желтуха, наблюдается симптомы анемии. Сplenомегалия возникает почти во всех случаях, однако крайне редко сопровождается абдоминальным дискомфортом. Могут присутствовать гепатомегалия и холецистаз (пигментные камни), что сопровождается характерной симптоматикой. В некоторых случаях наблюдаются врожденные аномалии скелета («бащенный» череп, полидактилия). Как правило, данные симптомы присутствуют у одного или более членов семьи, однако в некоторых поколениях больные люди могут отсутствовать в связи с вариабельностью пенетрантности данного гена.

Клинические проявления наследственного эллипсоцитоза аналогичны наследственному сфероцитозу, но имеют тенденцию к более легкому течению.

Диагностика
- Анализ осмотической резистентности эритроцитов, анализ на наличие аутогемолиза, прямой антиглобулиновый тест.
- Данные заболевания необходимо подозревать у пациентов с наличием гемолиза неясной этиологии, особенно в сочетании со спленомегалией, наличием подобных проявлений у родственников, характерными значениями эритроцитарных индексов. При сферической форме эритроцитов и нормальном значении MCV средний диаметр частицы ниже нормы, т.е. эритроциты являются микросфероцитами. MCHC повышается. Количество ретикулоцитов составляет 15–30%, характерен лейкоцитоз.
- При подозрении на данные заболевания проводится тест на осмотическую резистентность эритроцитов (ввзев эритроцитов добавляют к солевым растворам различной концентрации), тест на наличие аутогемолиза (измеряется общий уровень спонтанного гемолиза после 48 часов инкубации в стерильных условиях). Чтобы исключить сфероцитоз при аутоиммунной
гемолитической анемии, выполняется прямой антиглобулиновый тест (прямая проба Кумбса). Характерно снижение осмотической резистентности эритроцитов, однако в легких случаях она может быть нормальной, за исключением теста, при котором дефibriринированная кровь предварительно инкубируется при 37 °C в течение 24 часов. Повышается интенсивность аутогемолиза эритроцитов, который поддается коррекции путем дополнительного введения глюкозы. Прямой антиглобулиновый тест отрицательный.

Лечение

- В некоторых случаях спленэктомия.

Спленэктомия после соответствующей вакцинации является единственным специфическим методом лечения обоих заболеваний, однако необходимость в ее выполнении возникает редко. Она показана пациентам моложе 45 лет с персистирующим уровнем гемоглобина <10 г/дл, наличием желтухи, желчной колики или персистирующего апластического криза. Если установлен диагноз желчнокаменной болезни или существуют другие признаки холестаза, желчный пузырь также должен быть удален в ходе операции. После спленэктомии сфероцитоз сохраняется, однако повышается выживаемость клеток в кровотоке. Обычно это сопровождается разрешением симптомов, снижением выраженности анемии и ретикулоцитоза. Тем не менее осмотическая резистентность эритроцитов остается низкой.

СТОМАТОЦИТОЗ И АНЕМИЯ, ОБУСЛОВЛЕННАЯ ГИПОФОСФАТЕМИЕЙ

Стоматоцитоз (наличие эритроцитов чашеобразной формы) и гипофосфатемия относятся к аномалиям мембран эритроцитов, которые вызывают развитие гемолитической анемии.

Стоматоцитоз. Стоматоцитоз – это редкое состояние, при котором центральная бледная часть эритроцитов имеет форму “рта” или “прорези”. Наличие данных клеток ассоциировано с врожденной или приобретенной гемолитической анемией. Именно анемия определяет развитие клинических симптомов.

Редкая врожденная форма стоматоцитоза, имеющая аутосомно-доминантный тип наследования, вызывает развитие тяжелой гемолитической анемии, которая проявляется уже на ранних этапах жизни. При этом значительно повышается проницаемость мембран эритроцитов для моновалентных катионов (Na и K); проницаемость в отношении бивалентных катионов и анионов остается в пределах нормы. Около 20–30% циркулирующих эритроцитов относится к стоматоцитам; осмотическая резистентность эритроцитов снижена, наблюдается аутогемолиз, который не поддается стойкой коррекции при дополнительном введении глюкозы. В некоторых случаях спленэктомия облегчает течение заболевания.

Приобретенный стоматоцитоз с гемолитической анемией наблюдается преимущественно при недавнем употреблении избыточного количества алкоголя. Стоматоцитоз и признаки гемолиза в периферической крови исчезают только через 2 недели после отмены алкоголя.

Анемия, обусловленная гипофосфатемией. Пластичность эритроцитов варьирует в зависимости от внутриклеточного уровня АТФ, который напрямую зависит от концентрации фосфатов в сыворотке крови, таким образом, сывороточное уровень фосфатов <0,5 мг/дл (<0,16 ммоль/л) приводит к истощению запасов АТФ в эритроцитах; комплекс метаболических последствий гипофосфатемии также включает в себя истощение запасов 2,3-дифосфоглюкозы, сдвиг кривой диссоциации O2 влево, снижение интенсивности утилизации глюкозы, повышение продукции лактата. В результате эритроциты становятся ригидными, неэластичными, чувствительными к повреждению в микроциркуляторном русле, что приводит к гемолизу и образованию небольших эритроцитов сферической формы (микросфероцитоз).

Тяжелая гипофосфатемия может наблюдатьсь при синдроме отмены алкоголя, сахарном диабете, возобновлении питания после длительного голода и восстановлении (диуретическая фаза) после тяжелых ожогов, переедании, выраженным дыхательном алкалозе, у пациентов с уремией, которые находятся на гемодиализе и принимают антацитиды. Дополнительный при-
ем фосфатов препятствует появлению анемии или вызывает ее обратное развитие, поэтому данные препараты должны назначаться при наличии гипофосфатемии, а также пациентам из группы риска.

ДЕФЕКТЫ ФЕРМЕНТОВ ЦИКЛА ЭМБДЕНА – МЕЙЕРГОФА

Дефекты ферментов цикла Эмбдена – Мейергофа относятся к нарушениям эритроцитарного метаболизма, они наследуются по аутосомно-рецессивному типу и вызывают развитие гемолитической анемии.

Одним из таких дефектов является дефицит пируваткиназы. При всех типах нарушений гемолитической анемии возникает только у гомозигот, точный механизм гемолиза неизвестен. Типичные сфероциты отсутствуют, однако может определяться небольшое количество эритроцитов, имеющих неправильную сферическую форму. В целом анализ уровня АТФ и дифосфоглицерата позволяет идентифицировать любой метаболический дефект и локализовать аномальный участок генома для дальнейшего анализа. Для данного типа гемолитической анемии специфическое лечение отсутствует, однако в большинстве случаев оно не требуется, поскольку достаточно дополнительного приема фолиевой кислоты в дозе 1 мг/кг при остром гемолизе.

Патофизиология

При дефиците Г6ФД снижается количество доступной энергии, которая расходуется на поддержание целостности мембран эритроцитов, что сопровождается укорочением срока их жизни.

У представителей негроидной расы и большинства представителей белой расы гемолиз селективно поражает старые эритроциты. Гемолиз в основном наблюдается после эпизодов лихорадки, острых вирусных и бактериальных инфекций, диабетического ацидоза. Реже гемолиз возникает после приема лекарственных препаратов или других веществ, которые продуцируют пероксиды и вызывают окисление гемоглобина и мембран эритроцитов. К ним относятся примахин, салицилаты, сульфаниламиды, нитрофураны, фенацетин, нафталин, некоторые производные витамина К, дапсон, феназопиридин, налидиксовая кислота, метиленовый синий, у представителей белой расы данный эффект могут вызывать некоторые бобовые культуры. Продолжение приема вышеуказанных препаратов приводит либо к компенсации гемолиза, либо к летальному исходу, в зависимости от выраженности дефицита Г6ФД и окислительного потенциала препарата. У некоторых представителей белой расы данный эффект могут вызывать некоторые бобовые культуры. Продолжение приема вышеуказанных препаратов приводит либо к компенсации гемолиза, либо к летальному исходу, в зависимости от выраженности дефицита Г6ФД и окислительного потенциала препарата. У некоторых представителей белой расы данный эффект может наблюдаться при приеме некоторых бобовых культур. Продолжение приема вышеуказанных препаратов приводит либо к компенсации гемолиза, либо к летальному исходу, в зависимости от выраженности дефицита Г6ФД и окислительного потенциала препарата. У некоторых представителей белой расы данный эффект может наблюдаться при приеме некоторых бобовых культур. Продолжение приема вышеуказанных препаратов приводит либо к компенсации гемолиза, либо к летальному исходу, в зависимости от выраженности дефицита Г6ФД и окислительного потенциала препарата. У некоторых представителей белой расы данный эффект может наблюдаться при приеме некоторых бобовых культур.
гемолиз обычно имеет самоограничивающийся характер с вовлечением <25% эритроцитов; у представителей белой расы заболевание может протекать тяжелее, массивный гемолиз может приводить к развитию гемоглобинурии и острой почечной недостаточности.

Диагностика

- Определение уровня Г6ФД.

Данное заболевание необходимо предполагать у всех пациентов (особенно мужчин негроидной расы) с наличием острого гемолиза. Диагноз верифицируется путем определения уровня Г6ФД. При гемолизе развиваются анемия, желтуха, ретикулоцитоз. На ранних этапах гемолитического эпизода можно обнаружить тельца Гейнца, которые, возможно, являются частицами погибшей цитоплазмы или денатурированного гемоглобина. Однако у пациентов с интактной селезенкой они не персистируют, поскольку элиминируются из кровотока. Специфическим диагностическим критерием является наличие в периферической крови эритроцитов, имеющих один или более «укусов» (шириной около 1 мкм), расположенных по периферии клетки («кушанные» клетки, дегмациты), которые, возможно, являются результатом элиминации тельца Гейнца в селезенке. Могут применяться различные скрининговые тесты. Однако во время гемолитического эпизода и сразу после него все эти тесты могут показать ложноотрицательный результат в связи с тем, что происходит деструкция старых эритроцитов с выраженным дефицитом Г6ФД при сохранении ретикулоцитов с высоким уровнем данного фермента. Лучшим диагностическим методом является специфический ферментный анализ.

Лечение

При остром гемолизе применяется поддерживающая терапия; потребность в гемотрансфузиях возникает редко. Пациентам рекомендуется избегать лекарственных препаратов и других веществ, способных вызывать гемолиз.

СЕРПОВИДНОКЛЕТОЧНАЯ АНЕМИЯ (болезнь Hb S)

Серповидноклеточная анемия (гемоглобинопатия — врез 141–1) является хронической гемолитической анемией, которая наблюдается практически исключительно у представителей негроидной расы и обусловлена гомозиготным носительством Hb S. Серповидные эритроциты закупоривают капилляры, вызывая ишемию отдельных органов. Часто возникают обострения (кризы). Возможно развитие острых инфекционных заболеваний, апазии костного мозга, поражения легких (острый торакальный синдром), что приводит к летальному исходу. Характерна нормоцитарная гемолит-
тическая анемия. Диагностика основана на проведении электрофореза гемоглобина. При кризах применяются анетгетики и поддерживающая терапия. В некоторых случаях необходимы гемотрансфузии. Для увеличения продолжительности жизни пациентов применяются вакцины против бактериальных инфекций, профилактический прием антибиотиков, агрессивное антибактериальное лечение. Частота кризов может снижаться при применении гидроксимочевины.

У гомозигот (приблизительно 0,3% представителей негроидной расы в США) развивается серповидноклеточная анемия; у гетерозигот (8–13% негроидной расы) типичные признаки анемии отсутствуют.

Патофизиология

В Hb S валин заменен на глутаминовую кислоту в 6-м положении β-цепи. Растворимость оксигенированной формы Hb S значительно ниже, чем оксигенированной формы Hb А; это приводит к формированию полутвердого геля и образованию эритроцитов серповидной формы в условиях низкого РО2. Деформированные, незластичные эритроциты прилипают к сосудистому эндотелию и закупоривают мелкие артериолы и капилляры, что приводит к инфарктам. Венозные окклюзии приводят к развитию тромбозов. Поскольку серповидные эритроциты характеризуются сниженной осмотической резистентностью, их механическая травматизация в кровотоке сопровождается гемолизом.

Острый торакальный синдром обусловлен окклюзией микроциркуляторного русла легких и является распространенной причиной смерти, летальность достигает 10%. Наблюдается во всех возрастных группах, однако наиболее часто встречается у детей. Повторные эпизоды предрасполагают к формированию хронической легочной гипертензии.

У детей обострение анемии может быть обусловлено острой секвестрацией серповидных эритроцитов в селезенке.

Приапизм является серьезным осложнением, которое может вызывать эректильную дисфункцию, чаще всего у молодых мужчин.

Осложнения. К долгосрочным последствиям относится нарушение роста и развития организма. Также наблюдается повышение чувствительности к инфекциям, особенно пневмококковым и сальмонеллезным (в т.ч. вызванном Salmonella osteomyelitis). Эти инфекции особенно распространены в раннем детском возрасте и могут приводить к ранней смерти.

К другим последствиям относятся ишемический инсульт, васкулиты ЦНС, асептический некроз голени бедренной кости, нарушение концентрационной способности почек, почечная недостаточность, сердечная недостаточность, фиброз легких.

Симптомы и признаки

Большая часть симптомов встречается только у гомозиготных пациентов, данные проявления связаны с развитием анемии и окклюзией сосудов, что приводит к ишемии и инфарктам тканей. Анемия, как правило, имеет тяжелое течение, однако отличается высокой вариабельностью; наблюдаются умеренная желтуха и бледность.

Пациенты могут быть плохо развиты, часто у них относительно короткое туловище, длинные конечности и «башенный» череп. У детей наблюдается гепатосплениомегалия, однако у взрослых селезенка, напротив, имеет крайне небольшие размеры. Это связано с повторными инфарктами и последующим развитием фиброза (аутоспленэктомии). Характерны кардиомегалия, систолические сердечные шумы, холелитиаз, хронические штампованные язвы голеней.
При болевой форме криза наблюдаются сильные боли в длинных трубчатых костях (претибиальная боль), кистях и стопах (синдром «кисть-стопа»), суставах. Боль в суставах может быть обусловлена гемартрозом или асептическим некрозом головки бедренной кости. Характерна сильная боль в животе, которая может сопровождаться рвотой, обычно наблюдаются боли в спине и суставах. Все эти проявления обусловлены серповидной формой эритроцитов.

Острый торакальный синдром характеризуется внезапным появлением лихорадки, боли в груди, легочной инфильтрации. Инфильтрация начинается с нижних долей легких, в 1/3 случаев она может иметь двусторонний характер и сопровождаться плевральным выпотом. Это может приводить к развитию бактериальной пневмонии. Быстро развивается гипоксия, которая сопровождается одышкой.

Гетерозиготы. Для гетерозиготных пациентов (Hb AS) нехарактерно наличие гемолиза, болевых кризов, тромботических осложнений, за исключением гипоксических состояний (пребывание на большой высоте, внезапная декомпрессия в самолетах). Однако при постоянных истощающих упражнениях могут наблюдаться рабдомиолиз и внезапная смерть. Характерно нарушение концентрационной способности почек (гипостенурия). Может возникать односторонняя гематурия (обычно из левой почки, механизм остается неясным), которая, однако, обладает склонностью к самоограничению. Может возникать папиллярный некроз, тем не менее он встречается реже, чем у гомозиготных пациентов.

Диагностика
- Исследование структуры ДНК (пренатальная диагностика).
- Мазок периферической крови.
- Проба на растворимость.
- Электрофорез гемоглобина (или тонкослойная изоэлектрическая фокусировка).

Тип применяемого метода зависит от возраста пациента. Исследование структуры ДНК может использоваться для пренатальной диагностики или генотипического подтверждения наличия серповидноклеточной анемии. В большинстве штатов США проводится скрининг новорожденных, который включает в себя электрофорез гемоглобина. К скрининговым и диагностическим методам у детей и взрослых относятся исследование мазка периферической крови, проба на растворимость гемоглобина и электрофорез гемоглобина.

Пренатальный скрининг. Чувствительность пренатальной диагностики в значительной мере увеличилась после внедрения техники ПЦР. Ее применение рекомендуется в семьях с риском развития серповидноклеточной анемии (пары с наличием данного типа анемии в медицинском или наследственном анамнезе либо принадлежащие к определенным этническим группам). Забор образцов ДНК производится из ворсин хориона на 8–10 неделе гестации. На 14–16 неделе также проводится исследование амиотической жидкости. Важным этапом пренатальной диагностики является генетическое консультирование.

Неонатальный скрининг. В настоящее время тестирование на наличие данного заболевания рекомендовано повсеместно, часто оно включается в спектр неонатальных скрининговых тестов. Чтобы провести разграничение между Hbs F, S, A и C, рекомендуется выполнить электрофорез гемоглобина с использованием ацетата целлюлозы или лимоннокислого агара, тонкослойную изоэлектрическую фокусировку или фракционирование гемоглобина с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ). Для подтверждения диагноза может потребоваться повторное исследование в возрасте 3–6 месяцев. Исследование растворимости Hb S в первые месяцы жизни невозможно.

Скрининг и диагностика у детей и взрослых. У пациентов с наличием случаев серповидноклеточной анемии в наследственном анамнезе или клинических признаков заболевания необходимо проведение скринингового исследования, которое включает мазок периферической крови, тест на растворимость гемоглобина, электрофорез гемоглобина.

У пациентов с симптомами или признаками, свидетельствующими о наличии данного заболевания или его осложнений (задержка роста, острые боли в костях неясной этиологии, асепти-
ческий некроз головки бедренной кости, гематурия неясной этиологии), либо у чернокожих пациентов с нормоцитарной анемией (особенно в сочетании с гемолизом) необходимо выполнение лабораторных тестов на наличие гемолитической анемии, электрофореза гемоглобина и мазка периферической крови с целью выявления серповидных форм эритроцитов. При наличии серповидноклеточной анемии количество эритроцитов, как правило, составляет 2–3 млн/мл с пропорциональным снижением уровня гемоглобина; характерен нормоцитоз (микроцитоз свидетельствует о сопутствующей α-тальассемии). В периферической крови часто появляются ядроносные эритроциты, характерен ретикулоцитоз ≥10%. В сухом окрашенном мазке крови могут быть обнаружены серповидные эритроциты (полулунной формы, часто с удлиненными или заостренными концами).

Гомозиготное состояние можно отдифференцировать с помощью электрофореза, при этом выявляется только Hb S в сочетании с различным количеством Hb F. Гетерозиготы характеризуются преобладанием Hb A над Hb S при выполнении электрофореза. Hb S можно обнаружить среди других форм гемоглобина по его электрофоретическому спектру, который свидетельствует о патогномоничной морфологии эритроцитов.

Исследование костного мозга для диагностики не используется. Если оно выполняется для дифференциальной диагностики с другими типами анемий, выявляется гиперплазия с преобладанием нормобластов; при кризах или хронических инфекциях может определяться апластическое состояние костного мозга. Если для исключения других заболеваний (к примеру, ювенильного РА, вызывающего боли в кистях и стопах) выполняется измерение СОЭ, наблюдается низкое значение данного показателя. Случайной находкой при рентгенографии могут быть расширение диплоических пространств костей черепа и лучеобразное расположение дилатационных тромбов. В длинных трубчатых костях наблюдается истончение кортикального слоя, неравномерная плотность, формирование новой костной ткани внутри костномозгового канала. Гематурия неясного генеза, даже при отсутствии подозрения на серповидноклеточную анемию, является показанием для диагностического поиска признаков данного заболевания.

Диагностика обострений. Если у пациента с установленным диагнозом серповидноклеточной анемии наблюдается обострение заболевания, которое сопровождается болью, лихорадкой или другими признаками инфекции, необходимо подозревать апластический криз, для диагностики которого требуются выполнение ОАК с подсчетом количества ретикулоцитов. Количество ретикулоцитов <1% свидетельствует о наличии апластического криза. При болевых кризах без апластического состояния наблюдается повышенное количество лейкоцитов, часто со сдвигом формулы влево, особенно на фоне бактериальной инфекции. Количество тромбоцитов обычно повышено. При измерении уровня сывороточного билирубина, как правило, также наблюдается его повышение (2–4 мг/дл [34–68 мкмоль/л]), в моче может содержаться уробилиноген.

Для пациентов с болью в груди или затрудненным дыханием необходимо подозревать наличие острого теракального синдрома или легочной тромбоэмболии; необходимо выполнение рентгенографии органов грудной клетки и пульсоксиметрии. Гипоксемия и инфилтрация легочной паренхимы по данным рентгенографии свидетельствует о наличии острого теракального синдрома или пневмонии. Гипоксемия без легочной инфилтрации свидетельствует о легочной эмболии.

Острый теракальный синдром необходимо подозревать у пациентов с лихорадкой и признаками инфекции; в данных случаях выполняются культуральное исследование, рентгенография органов грудной клетки и другие соответствующие диагностические тесты.

Прогноз
Продолжительность жизни гомозиготных пациентов стабильно превышает >50 лет. Распространенными причинами смерти являются острый теракальный синдром, интеркуррентные инфекции, легочная тромбоэмболия, инфаркты...
Глава 141. Гемолитические анемии

1659

жизненно важных органов, почечная недостаточность.

Лечение
■ Антибиотики широкого спектра (при наличии инфекции).
■ Анальгетики и внутривенная регидратация (при вазоокклюзионном болевом кризе).
■ В некоторых случаях применяются гемотрансфузии.
■ Иммунизация, препараты фолиевой кислоты, гидроксимочевина (на фоне относительного здоровья).

Лечение включает в себя регулярные общеукрепляющие мероприятия, а также специфическую поддерживающую терапию осложнений при их возникновении. В настоящее время не существует эффективных препаратов для лечения серповидноклеточной анемии in vivo. Спленэктомия также неэффективна. Трансплантация стволовых клеток в небольшом проценте случаев может приводить к излечению, однако она выполняется редко, поскольку сопровождается риском летального исхода (5–10%). Возможность излечения может обеспечить генная терапия, однако на данный момент она еще находится в процессе разработки.

К показаниям для госпитализации относятся тяжелые инфекции (в т.ч. системные), апластические кризы, острый торакальный синдром, инфарктоподобная боль или необходимость гемотрансфузии. Тем не менее периодическая трансфузионная терапия показана для профилактики рецидивов тромбоза сосудов головного мозга, особенно у детей. Гемотрансфузии обычно выполняются при уровне гемоглобина <5 г/дл. К специфическим показаниям относятся острые секвестрации эритроцитов в селезенке, апластические кризы, патологические симптомы со стороны сердечно-сосудистой или дыхательной системы (сердечная недостаточность по гиперкинетическому типу, гипоксемия со снижением PO2 <65 мм рт. ст.), предоперационная подготовка, приапизм, жизнеугрожающие состояния, при которых требуется повышение содержания O2 (сепсис, тяжелые инфекции, острый торакальный синдром, инсульт, острая ишемия внутренних органов). Гемотрансфузии неэффективны при неосложненном болевом кризе; однако они могут прервать цикл развития криза до его начала. Потребность в гемотрансфузиях может возникнуть при бременности.

При потребности в регулярных или многократных гемотрансфузиях, как правило, предпочтение отдается не стандартному переливанию компонентов крови, а частичным обменным гемотрансфузиям, которые выполняются с помощью современных аппаратов для афереза. При изначально низком уровне гемоглобина (<7 г/дл) процедура не может быть начата без предшествующего переливания эритроцитарной массы. Для частичного обменного переливания характерна минимизация таких процессов, как накопление железа в организме и повышение вязкости крови.

Общеукрепляющее лечение. При долгосрочном лечении применяются следующие мероприятия, которые обеспечивают снижение смертности, особенно в детском возрасте.
• Вакцинация против пневмококковой, гемофильной и менингококковой инфекции.
• Ранняя диагностика и лечение тяжелых бактериальных инфекций.
• Профилактическая антибиотикотерапия, которая включает в себя длительный профилактический прием пероральных пенициллинов в возрасте от 4 месяцев до 6 лет.
• Прием гидроксимочевины и препаратов фолиевой кислоты.

Обычно рекомендуется прием фолиевой кислоты в дозе 1 мг 1 раз в сутки.
Гидроксимочевина повышает уровень Hb F и, таким образом, снижает количество серповидных эритроцитов, частоту болевых кризов (на 50%) и остrego торакального синдрома, а также потребность в гемотрансфузиях. Доза гидроксимочевины может варьировать в зависимости от необходимого повышения уровня Hb F. Гидроксимочевина может быть более эффективной в комбинации с эритропоэтином (40 000–60 000 МЕ/нед). Тем не менее она является лейкемогенным (вызывает нейтропению и тромбоцитопению) и тератогенным препаратом, поэтому она не должна назначаться женщинам детородного возраста.
Использование эритропоэтина у пациентов с анемией, резистентной к химиотерапии, ассоциировано с повышением частоты венозных тромбоэмболий и сердечно-легочных осложнений (к примеру, инфаркта миокарда); поэтому данный метод лечения неэффективен у пациентов с серповидноклеточной анемией.

БОЛЕЗНЬ ГЕМОГЛОБИНА С
Болезнь гемоглобина С является гемоглобинопатией (врез 141–1), которая сопровождается симптомами, сходными с серповидноклеточной анемией, которые, однако, менее выражены.
Поскольку 10% представителей негроидной расы являются носителями Hb S, гетерозиготы с комбинацией S-C встречаются чаще, чем гомозиготы с болезнью гемоглобина С. Анемия при болезни гемоглобина S-C менее выражена по сравнению с серповидноклеточной анемией; у некоторых пациентов может даже наблюдаться нормальный уровень гемоглобина. Большинство симптомов аналогично серповидноклеточной анемии, однако они реже встречается и менее выражены. Могут наблюдаться массивная гематурия, кровоизлияния в сетчатку, асептический некроз головки бедренной кости. Болезнь гемоглобина S-C необходимо подозревать у пациентов с клиническими признаками серповидноклеточной анемии или типичной морфологией эритроцитов. В окрашенном мазке периферической крови обнаруживаются мишеневидные эритроциты, единичные серповидные клетки. Серповидность выявляется с помощью специ-
альными препаратами, для верификации диагноза применяется электрофорез. Лечение аналогично серповидноклеточной анемии, однако его интенсивность определяется тяжестью симптоматики.

БОЛЕЗНЬ ГЕМОГЛОБИНА Е

Гомозиготное носительство гемоглобина Е (гемоглобинопатия, врез 141–1) вызывает развитие умеренной гемолитической анемии, как правило, без спленомегалии.

Нб Е является третьим по распространенности типом гемоглобина в мире (после Нб А и Нб С), он встречается преимущественно у представителей негроидной расы и выходцев из Юго-Восточной Азии (>15% гомозиготы), однако редко встречается у китайцев. У гетерозигот (Нб АЕ) заболевание протекает бессимптомно. У гетерозигот с Нб Е и β-талассемией развивается гемолитическая болезнь, более тяжелая, чем при S-талассемии или гомозиготном носительстве Нб Е, заболевание обычно сопровождается спленомегалией.

У гетерозигот (Нб АЕ) результаты стандартных лабораторных тестов периферической крови в пределах нормы. У гомозигот наблюдается микроцитарная анемия легкой степени со значительным количеством мишеневидных клеток. Диагностика болезни Нб Е основана на результатах электрофореза гемоглобина. Для лечения гомозиготных пациентов с тяжелым течением заболевания обычно применяются регулярные гемотрансфузии.

ТАЛАССЕМИЯ

(средиземноморская анемия; большая и малая талассемия)

Талассемия – это группа врожденных микроцитарных гемолитических анемий, которые характеризуются дефектом синтеза гемоглобина. Они особенно распространены у лиц средиземноморского, африканского и южноазиатского происхождения. Симптомы и признаки обусловлены анемией, гемолизом, спленомегалией, гиперплазией костного мозга, при многократных гемотрансфузиях может наблюдаться перегрузка железом. Диагностика основана на генетическом исследовании и количественном анализе структуры гемоглобина.

Лечение тяжелых форм может включать в себя гемотрансфузии, спленэктомию, терапии хелаторами и трансплантацию стволовых клеток.

Патофизиология

Талассемия (гемоглобинопатия, врез 141–1) относится к наиболее распространенным врожденным заболеваниям, обусловленным несбалансированным синтезом гемоглобина, это связано с нарушением синтеза как минимум одной полипептидной цепи глобина (β, α, γ, δ).

Бета-талассемия является результатом нарушения синтеза β-полипептидных цепей. Тип наследования аутосомный: гетерозиготное носительство характеризуется бессимптомной микроцитарной анемией легкой или умеренной степени тяжести (малая талассемия); у гомозигот (большая β-талассемия, анемия Кули) развивается тяжелая анемия с гиперактивностью костного мозга. β-δ-талассемия является менее распространенной формой β-талассемии, при которой нарушен синтез как δ-цепи, так и β-цепей, данная форма также может встречаться в гетерозиготном и гомозиготном состоянии.

Альфа-талассемия, которая является результатом нарушения синтеза α-полипептидных цепей, имеет более сложную генетическую основу, поскольку контроль синтеза α-цепи обеспечивается двумя парами генов (4 гена). Гетерозиготы с дефектом одного гена (α-талассемия-2 [скрытая]) обычно не имеют клинических проявлений. У гетерозигот с дефектом 2 из 4 генов (α-талассемия-1 [типичная]) существует тенденция к развитию микроцитарной анемии легкой или умеренной степени тяжести, которая, однако, протекает бессимптомно. Дефект 3 из 4 генов вызывает более тяжелые нарушения синтеза α-цепей, что сопровождается формированием тетramerов, состоящих из избыточных β-цеpeй (Нb Н) или у детей, γ-цепей (Нb Барта). Дефект всех 4 генов является летальным состоянием, которое вызывает внутриутробную гибель плода, поскольку гемоглобин, не содержащий α-цепей, утрачивает способность к переносу О₂. У чернокожих частота гена α-талассемии составляет около 25%; однако только 10% имеют дефекты более чем в 2 генах.
Симптомы и признаки
Клинические проявления талассемий сходны, однако могут различаться по степени тяжести. Большая β-талассемия манифестирует в возрасте 1–2 лет, она проявляется симптомами выраженной анемии, посттрансфузионной и абсорбционной перегрузкой железом. У пациентов наблюдаются желтуха, язвы нижних конечностей и холелитиаз (как при серповидноклеточной анемии). Характерна спленомегалия, часто массивная. Может развиваться секвестрация эритроцитов в селезенке, что сопровождается усиленной деструкцией нормальных донорских эритроцитов. Гиперплазия костного мозга вызывает утолщение костей черепа и мalarных выступов. Поражение длинных трубчатых костей предрасполагает к патологическим переломам и нарушению роста, может вызывать задержку полового созревания. Накопление железа в миокарде может сопровождаться развитием сердечной недостаточности. Характерен гемосидероз печени, который приводит к нарушению ее функции и циррозу печени. У пациентов с болезнью гемоглобина Н часто наблюдаются симптомная гемолитическая анемия и спленомегалия.

Диагностика
При наличии подозрения на талассемию включаются в себя:
■ мазок периферической крови;
■ электрофорез;
■ исследование структуры ДНК (пренатальная диагностика).

Талассемии необходимо подозревать у пациентов с отягощенным наследственным анамнезом, наличием характерных клинических симптомов или микроцитарной гемолитической анемии. При подозрении на талассемию выполняются обычные лабораторные тесты для выявления микроцитарных гемолитических анемий и количественный анализ структуры гемоглобина. Характерно повышение уровня билирубина, железа и ферритина в сыворотке крови.

При большой β-талассемии наблюдается тяжелая анемия, часто со снижением уровня гемоглобина ≤ 6 г/дл. Количество эритроцитов повышено по отношению к уровню гемоглобина, поскольку наблюдается выраженный микроцитоз. Диагностика основана на исследовании мазка периферической крови, в котором обнаруживается множество ядерсодержащих эритроцитов, мишленевидных клеток, небольших бледноокрашенных эритроцитов; характерна точечная или диффузная базофilia.

При количественном анализе структуры гемоглобина диагностическим критерием малой β-талассемии является уровень Hb A2. При больной β-талассемии обычно повышено содержание Hb F, иногда до 90%, а содержание Hb A2 обычно превышает 3%. При α-талассемиях процентное содержание Hb F и Hb A2 обычно в пределах нормы, выявление одного или двух дефектных генов, характерных для талассемии, с помощью современных генетических тестов часто позволяет исключить другие причины микроцитарной анемии. Болезнь гемоглобина H диагностируется по выявлению Hb H или фракций Барта при электрофорезе гемоглобина. Наличие специфического молекулярного дефекта не меняет клинического подхода. Стандартом пренатальной диагностики и генетического консультирования является картирование генов рекомбинантной ДНК (в особенности ПЦР).

Если при анемии выполняется исследование костного мозга (к примеру, для исключения других причин), выявляются выраженная эритродная гиперплазия. При рентгенологическом исследовании, выполненном по другим причинам у пациентов с большой β-талассемией можно выявить изменения, обусловленные хронической гиперактивностью костного мозга. Наблюдаются истончение кортикального слоя костей черепа, расширение диплоических пространств, лучистая трабекулярная структура, появление гранул или феномен «матового стекла». В длинных трубчатых костях выявляются истончение кортикального слоя, расширение костномозгового канала, зоны остеопороза. Фаланги пальцев могут иметь прямоугольную или двояковыпуклую форму.

Прогноз
Продолжительность жизни является нормальной для пациентов с малой β-талассемией или малой α-талассемией. Для пациентов с
болезнь гемоглобина Н прогноз вариабелен. Продолжительность жизни снижена у пациентов с большой β-талассемией; лишь немногие досягают до пубертатного возраста.

Лечение

- В некоторых случаях выполняется спленэктомия.
- Возможно переливание эритроцитарной массы и хелатная терапия.
- Реже выполняется трансплантация аллогенных стволовых клеток.

Пациенты с малой α- и β-талассемией лечения не требуют. Спленэктомия может быть эффективна у пациентов с болезнью гемоглобина Н при наличии тяжелой анемии или спленомегалии.

Дети с большой β-талассемией должны получать как можно меньше гемотрансфузий, чтобы избежать перегрузки железом. Тем не менее у пациентов в тяжелом состоянии периодические трансфузии эритроцитарной массы могут приносить эффект, поскольку они сопровождаются супрессией патологического гемопоэза. Чтобы предотвратить или отсрочить развитие синдрома перегрузки железом, избыток трансфузионного железа должен быть удален (путем назначения хелаторов). Спленэктомия может снизить потребность в гемотрансфузиях у пациентов со спленомегалией. Успешно применяется аллогенная трансплантация гемопоэтических стволовых клеток, однако существует проблема подбора донора по гистосовместимости, кроме того, применение данной процедуры ассоциировано с высокой частотой развития не желательных явлений и смертью, а также потребностью в пожизненной иммunosупрессивной терапии.

ГЕМОГЛОБИН S-β-ТАЛАНСЕМИЯ

Гемоглобин S-β-талассемия является гемоглобинопатией (врез 141–1), которая сопровождается симптомами, сходными с серповидно-клеточной анемией, которые, однако, менее выражены.

В связи с повышенной частотой генов Hb S и β-талассемии в аналогичных популяционных группах относительно часто встречается наследование обоих дефектов. Клиническое заболевание сопровождается умеренным анемическим синдромом и признаками серповидно-клеточной анемии, однако данные проявления встречаются реже и менее выражены, чем серповидно-клеточной анемии. Микроцитарная анемия легкой или умеренной степени, как правило, сочетается с наличием некоторого количества серповидных эритроцитов в окрашенном мазке крови. Диагностика основана на количественном исследовании структуры гемоглобина. Содержание Hb A₂ составляет >3%. При выполнении электрофореза преобладает Hb S, при этом содержание Hb A снижено или он отсутствует. Содержание Hb F повышено в различной степени. Лечение, если оно требуется, аналогично лечению серповидно-клеточной анемии.

142 Нейтропения и лимфоцитопения

Лейкопения — это снижение числа циркулирующих лейкоцитов менее 4000/мкл. Она обычно характеризуется уменьшением числа циркулирующих нейтрофилов, хотя может отмечаться также уменьшение количества лимфоцитов, моноцитов, эозинофилов или базофила. То есть иммунная функция в целом существенно подавляется.

Нейтропения — это уменьшение числа нейтрофилов в крови менее 1500/мкл у лиц европеоидной расы и менее 1200/мкл у негров. Состояние представляет большую опасность, когда сопровождается моноцитопенией и лимфоцитопенией. Лимфоцитопения, при которой общее число лимфоцитов составляет менее 1000/мкл у взрослого человека, не всегда выявляется при общем анализе крови, поскольку доля лимфоцитов из общего числа лейкоцитов составляет всего 20–40%.
Нейтрофили (гранулоциты) – основная защита организма против бактериальной и грибковой инфекции. При нейтропении воспалительный ответ на такие инфекции неэффективен.

Нижний предел нормы нейтрофилов (общее число лейкоцитов × % сегментоядерных и полючоядерных нейтрофилов) составляет 1500/мкл у лиц европеоидной расы и немного ниже у негров (примерно 1200/мкл).

Тяжесть нейтропении связана с относительным риском инфекции:
- Легкая (1000–1500/мкл).
- Умеренная (500–1000мкл).
- Тяжелая (менее 500/мкл).

Когда число нейтрофилов падает менее 500/мкл, могут развиваться инфекции, вызванные эндогенной микрофлорой (например, в ротовой полости или кишечнике). Если число падает ниже 200/мкл, воспалительный процесс может быть не столь выражен и обычные проявления воспаления в виде лейкоцитоза или лейкоцитов в моче или очаге инфекции могут не обнаруживаться. Острая, тяжелая нейтропения, особенно в присутствии другого фактора (например, онкологического заболевания), также нарушает функцию иммунной системы и может привести к инфекции с летальным исходом. Целостность кожи и слизистых оболочек, кровоснабжение тканей и питание пациента также влияет на риск развития инфекций.

Чаще всего у пациентов с выраженной нейтропенией развиваются следующие инфекции:
- воспаление подкожной клетчатки,
- абсцессы печени,
- фурункулез,
- пневмония,
- септицемия.

Места стояния сосудистых катетеров и инъекции представляют собой дополнительный риск развития инфекций кожи; наиболее распространенными возбудителями являются коагуло-золнегативные стафилококки и Staphylococcus aureus, но могут встречаться и другие грамположительные и грамотрицательные бактерии. Часто развиваются стоматиты, гингивиты, пародонтиты, колиты, синуситы и средние отиты. Пациенты с продолжительной нейтропенией после трансплантации костного мозга или химиотерапии и пациенты, получающие высокие дозы кортикостероидов, предрасположены к развитию грибковых инфекций.

Этиология

Острая нейтропения (сформировавшаяся за срок от нескольких часов до нескольких дней) может развититься в результате быстрого потребления, разрушения или нарушения продукции нейтрофилов. Хроническая нейтропения (продолжается в течение месяцев и лет) обычно развивается в результате снижения продукции нейтрофилов или избыточной их секвестрации в селезенке. Нейтропению также можно разделить на первичную (развившуюся в результате внутренних дефектов миелоидных клеток костного мозга) и вторичную (обусловленную влиянием внешних факторов на миелоидные клетки костного мозга (табл. 142-1)).

Нейтропения, обусловленная внутренними дефектами миелоидных клеток или их предшественников

Этот тип нейтропении встречается редко. Наиболее частыми причинами его развития являются:
- хроническая идиопатическая нейтропения;
- врожденная нейтропения.
Циклическая нейтропения – редкое врожденное нарушение гранулоцитопоэза, обычно передается по аутосомно-домinantному типу. Характеризуется регулярными, периодическими колебаниями числа нейтрофилов в периферической крови. Средний период колебаний составляет 21±3 дня.

Тяжелая врожденная нейтропения (синдром Костмана) – редкое заболевание, спорадически встречающееся в США. Оно характеризуется остановкой в костном мозге процесса созревания миелоидных клеток на стадии промиелоцитов, что приводит к снижению абсолютного числа нейтрофилов менее 200/мкл.

Хроническая идиопатическая нейтропения – это группа редких, плохо изученных заболеваний с вовлечением стволовых клеток, коммитированных в миелоидный росток гемопоэза; эритроцитарный росток и предшественники тромбоцитов не затрагиваются. Селезенка не увеличена.

Хроническая доброкачественная нейтропения – это вариант хронической идиопатической нейтропении, при котором сохраняются все другие функциональные структуры иммунной системы даже при количестве нейтрофилов менее 200/мкл; серьезные инфекции обычно не развиваются, возможно, вследствие того, что в ответ на инфекцию иногда продуцируется достаточное количество нейтрофилов.

Нейтропения также может быть результатом недостаточности костного мозга в связи с редко встречаемыми синдромами (например, синдром дисплазии хрящевой ткани и волос, синдром Чедиака–Хигаси, врожденный дискератоз, болезнь накопления гликогена типа IB, синдром Швахмана–Даймонда). Нейтропения также является характерной особенностью миелодисплазии, при которой она может сопровождаться мегалобластоидными изменениями костного мозга, и апластической анемией, а также может развиваться при дисгаммаглобулинемии и пароксизмальной ночной гемоглобинурии.

ВТОРИЧНАЯ НЕЙТРОПЕНИЯ

Вторичная нейтропения может развиваться в результате применения определенных лекарственных препаратов, при инфильтрации или трансплантации костного мозга, некоторых инфекциях или иммунных реакциях. К наиболее частым причинам относятся:

- прием некоторых лекарственных препаратов;
- инфекции;

<table>
<thead>
<tr>
<th>ТАБЛ. 142–2. КЛАССИФИКАЦИЯ НЕЙТРОПЕНИЙ</th>
<th>КЛАССИФИКАЦИЯ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нейтропения, связанная с внутренними дефектами миелоидных клеток костного мозга или их предшественников</td>
<td>Апластическая анемия</td>
</tr>
<tr>
<td></td>
<td>Хроническая идиопатическая нейтропения, включая доброкачественную нейтропению</td>
</tr>
<tr>
<td></td>
<td>Циклическая нейтропения</td>
</tr>
<tr>
<td></td>
<td>Миелодисплазия</td>
</tr>
<tr>
<td></td>
<td>Нейтропения, ассоциированная с дисгаммаглобулинемией</td>
</tr>
<tr>
<td></td>
<td>Пароксизмальная ночной гемоглобинурия</td>
</tr>
<tr>
<td></td>
<td>Тяжелая врожденная нейтропения (синдром Костмана)</td>
</tr>
<tr>
<td></td>
<td>Синдромассоциированные нейтропении (например, синдром дисплазии хрящей и волос, врожденный дискератоз, болезнь накопления гликогена типа IB, синдром Швахмана–Даймонда)</td>
</tr>
<tr>
<td>Вторичные нейтропении</td>
<td>Алкоголизм</td>
</tr>
<tr>
<td></td>
<td>Аутоиммунная нейтропения, включая хроническую вторичную нейтропению у больных СПИДом</td>
</tr>
<tr>
<td></td>
<td>Замещение костного мозга при онкологических заболеваниях, миелофиброзе (например, вследствие гранулемы) или болезни Гоше</td>
</tr>
<tr>
<td></td>
<td>Цитотоксическая химиотерапия или лучевая терапия</td>
</tr>
<tr>
<td></td>
<td>Лекарственная нейтропения</td>
</tr>
<tr>
<td></td>
<td>Дефицит фолата или витамина B12 с нормальной лейкоцитарной формулой</td>
</tr>
<tr>
<td></td>
<td>Морфология эритроцитов обычно в пределах нормы, за исключением единичных фенотипов. Типичен ретикулоцитоз</td>
</tr>
<tr>
<td></td>
<td>Гиперспленизм</td>
</tr>
<tr>
<td></td>
<td>Инфекция</td>
</tr>
<tr>
<td></td>
<td>Ту-лимфопролиферативное заболевание</td>
</tr>
</tbody>
</table>
инфильтративные процессы в костном мозге.
Одной из наиболее распространенных причин нейтропении являются лекарственные препараты. Они могут снижать продукцию нейтрофилов в результате токсического воздействия, идиосинкарпии, гиперчувствительности или усиления разрушения периферических нейтрофилов по иммунному механизму. Только токсический механизм разрушения (например, фенотиазинами) приводит к развитию дозозависимой нейтропении. Идиосинкращические реакции непредсказуемы и встречаются при применении различных лекарственных препаратов, включая препараты альтернативной медицины, экстракты и токсины. Реакции гиперчувствительности отмечаются редко и иногда развиваются в ответ на применение противосудорожных препаратов (например, фенитоина, фенобарбитала). Также реакции могут длиться от нескольких дней до нескольких месяцев или лет. Нейтропения, индуцированная гиперчувствительностью, часто сопровождается гепатитом, нефритом, пневмонией или апластической анемией. Иммунная лекарственно-индуцированная нейтропения возникает при применении лекарственных препаратов, действующих как гаптены и стимулирующих образование антител, и обычно сохраняется в течение 1 недели после прекращения лекарственной терапии. Она может возникать в ответ на применение аминопирина, пропилтиоурацила, пенициллина или других антибиотиков. Тяжелая дозозависимая нейтропения обычно предсказуема и развивается в ответ на применение цитотоксических препаратов или лучевой терапии вследствие подавления продукции нейтрофилов в костном мозге.
Нейтропения, обусловленная неэффективностью продукции костного мозга, может отмечаться при мегалобластных анемиях, вызванных дефицитом витамина B12 или фолиевой кислоты. Одновременно обычно развивается макроцитарная анемия и иногда легкая тромбоцитопения.
Инфильтрация костного мозга при лейкозе, множественной миеломе, лимфоме или метастазах солидных опухолей (например, рака молочной железы или предстательной железы) может нарушать продукцию нейтрофилов. Индуцированный опухолью миелофиброз может далее угсывать нейтропению. Миелофиброз может также быть следствием гранулематозных инфекций, болезни Гоше и лучевой терапии. Гиперплазией любого генеза может приводить к развитию умеренной нейтропении, тромбоцитопении и анемии.
Возможны также инфекционные причины нейтропении (например, при грамотрицательных бактериях). Приблизительно в 1 из 1000 случаев нейтропения может быть вызвана инфекцией.
Глава 142. Гемолитические анемии

развиваются. У пациентов с циклической нейтропенией или тяжелой врожденной нейтропенией часто встречаются изъязвление слизистой оболочки ротовой полости, стоматит или фарингит и увеличение лимфоузлов. Также нередко развиваются пневмонии и сепсис.

Диагностика

■ Подозрение лечащего врача (повторяющиеся или необычные инфекции).
■ Подтверждающий клинический анализ крови с лейкоцитарной формулой.
■ Культуральный посев для определения инфекции и визуализирующие методы исследования.
■ Установление механизма и причины развития нейтропении.

NEYТРОПЕНию подозревают у пациентов с частыми, тяжелыми или необычными инфекциями или у пациентов группы риска (например, получающих цитотоксические препараты или лучевую терапию). Диагноз подтверждается при помощи клинического анализа крови с лейкоцитарной формулой.

Выявление инфекций. Первоочередной задачей является выявление инфекции. Поскольку инфекционный процесс может быть незначительным, при физикальном осмотре систематически оценивают состояние наиболее частых локализаций развития инфекции: слизистых оболочек желудочно-кишечного тракта (десны, зев, анус), легких, брюшной полости, мочевыводящих путей, кожи и ногтей, мест внутривенных введений и стояния катетеров.

При остром развитии нейтропении лабораторная диагностика должна быть выполнена незамедлительно.

Культуральный посев является основным методом диагностики. У всех пациентов с лихорадкой выполняется взятие по крайней мере 2 наборов образцов крови на посев на наличие грибов и бактерий; в случае стояния постоянного внутривенного катетера материал на посев берут непосредственно из катетера и из отдельной периферической вены. При наличии постоянного или хронического дренажа также сеют на предмет выявления наличия грибов и атипичных микобактерий. При повреждениях кожи проводят аспирацию или биопсию для проведения цитологического исследования и посева. У всех пациентов берут образцы мочки для общего анализа и посева. При диарее стул изучают на предмет наличия кишечных патогенных бактерий и токсинов *Clostridium difficile*.

Информативны также визуализирующие методы исследования. Рентгенография грудной клетки выполняется всем пациентам. КТ-сканирование пазух носа может быть информативно при наличии симптомов и признаков синусита (например, позиционная головная боль, боль в верхних зубах или верхней челюсти, отек лица, выделения из носа). КТ-сканирование брюшной полости обычно выполняется, если симптомы (например, боль) или анамnestические данные (например, недавно перенесенная хирургическая операция) позволяют предположить инфекцию в брюшной полости.

Установление причины. Следующим этапом является определение механизма развития и причины нейтропении. Изучается анамнез: какие лекарственные или другие вещества, возможно токсические, принимал пациент. При физикальном осмотре обращают внимание на наличие спленомегалии и признаков другого первичного заболевания (например, артрит, лимфаденопатия).

Наиболее важным тестом является исследование костного мозга, которое позволяет определить, связана ли нейтропения со сниженной продукцией в костном мозге или является вторичной в связи с усилением разрушением или потреблением клеток (определяется по нормальной или усиленной продукции клеток). Исследование костного мозга также может указать на специфическую причину нейтропении (например, aplasticкая анемия, миелофиброз, лейкоз). Также проводят дополнительные исследования костного мозга (например, цитогенетический анализ, специальные методы окраски и проточная цитофлуориметрия для выявления лейкоза, других злокачественных новообразований и инфекций).

Может понадобиться дальнейшее исследование причины нейтропении в зависимости от предполагаемого диагноза. Определение уровня фолиевой кислоты и витамина B_{12} выполняется у пациентов с риском их дефицита.
Тестирование на наличие антинейтрофильных антител проводят, если имеется подозрение на иммунную нейтропению. В некоторых случаях может быть сложно дифференцировать нейтропению, вызванную приемом определенных антибиотиков или развитием некоторых инфекций. Число лейкоцитов непосредственно перед началом антибиотикотерапии обычно отражает изменения числа форменных элементов крови при инфекционном процессе.

У пациентов с хронической нейтропенией с детства или рецидивами лихорадки и хроническим гингивитом в анамнезе определяют число нейтрофилов с анализом лейкоцитарной формулы 3 раза в неделю в течение 6 недель с целью оценить возможность циклической нейтропении. Одновременно определяют число тромбоцитов и ретикулоцитов. Число эозинофилов, ретикулоцитов и тромбоцитов часто меняется синхронно с числом нейтрофилов, тогда как колебания числа моноцитов и лимфоцитов могут происходить в противофазу.

Лечение

■ Лечение ассоциированных состояний (например, инфекций, стоматита).
■ В некоторых случаях – профилактическая антибиотикотерапия.
■ Миелоидные факторы роста.
■ Прекращение действия агентов, с которыми может быть связано развитие нейтропении (например, лекарственных препаратов).
■ В некоторых случаях – кортикостероиды.
■ В редких случаях – спленэктомия.

ОСТРАЯ НЕЙТРОПЕНИЯ

При подозрении на инфекцию лечение необходимо начинать незамедлительно. При наличии лихорадки или гипотензии предполагают тяжелую инфекцию и вводят внутривенно антибиотики широкого спектра действия в высоких дозах. Выбор режима терапии основан на предположении об инфицировании наиболее распространенными возбудителями, знаниях о чувствительности патогенов к тем или иным препаратам в рамках того или иного лечебного учреждения, а также о возможной токсичности выбранного режима терапии. В связи с риском возникновения резистентности возбудителей ванкомицин используют только в случаях, когда предполагается инфицирование грамположительными бактериями, устойчивыми к другим лекарственным препаратам.

Удаление венозных катетеров необходимо даже в случае подозрения или доказанной бактериемии, оно выполняется только в случае, когда в инфекционный процесс вовлечены S. Aureus, Bacillus, Corynebacterium, Candida sp. или из образцов крови постоянно высевается возбудитель, несмотря на применение адекватной антибактериальной терапии. Инфекции, вызванные коагулазонегативными стафилококками, обычно удаётся купировать токсически антибактериальной терапией. Длительное стояние катетера Фолея может также предрасполагать к развитию инфекций, и смена или удаление катетера необходимы при персистирующих инфекциях мочевыводящих путей.

При высевании бактериальной культуры антибиотикотерапия подбирается в соответствии с тестами на чувствительность. Если температура у пациента снижается в течение 72 ч, применение антибиотиков продолжают по крайней мере 7 дней до исчезновения признаков и симптомов инфекции. При транзиторной нейтропении (например, после миелосупрессивной терапии) антибиотикотерапию обычно продолжают до тех пор, пока число нейтрофилов не превысит 500/мкл. Однако у некоторых пациентов с персистирующей нейтропенией при разрешении симптомов и признаков воспаления и отрицательных повторных посевах можно рассмотреть возможность прекращения антибактериальной терапии.

При сохранении лихорадки более 72 часов, несмотря на антибактериальную терапию, можно предполагать небактериальную причину, инфицирование резистентными штаммами, суперинфекцию другими бактериями, неадекватный уровень антибиотиков в сыворотке крови и тканях или локализованный инфекционный процесс, например абсцесс. Состояние пациентов с нейтропенией и персистирующей лихорадкой оценивают каждые 2–4 дня, проводя физикальный осмотр, посев материала и рентгенографию грудной клетки. Если состояние пациента удовлетворительно, за исключением лихорадки, первоначально назна-
ченный режим антибиотикотерапии можно продолжить. Если состояние пациента ухудшается, необходима коррекция антибиотикотерапии.

Наиболее вероятной причиной персистирующей лихорадки и ухудшения состояния являются грибковые инфекции. Противогрибковую терапию (например, азолами, эхинокандинами или полиенами) добавляют эмпирически, в случае если лихорадка неустановленной этиологии сохраняется после 4 дней терапии антибиотиками широкого спектра. Если лихорадка сохраняется после 3 недель эмпирически назначенной терапии (включая 2 недели противогрибковой терапии) и нейтропения разрешилась, можно рассмотреть возможность прекращения всей антимикробной терапии и повторной оценки этиологии лихорадки.

Профилактическая антибиотикотерапия у афебрильных пациентов с нейтропенией остается спорной. Триметоприм/сульфаметоксазол (ТМП/СМС) позволяет предотвратить развитие пневмонии, вызванной Pneumocystis jirovecii у пациентов с нейтропенией и без нее с ассоциированным нарушением клеточного иммунного ответа. Также ТМП/СМС позволяет избежать развития бактериальных инфекций у пациентов, у которых можно ожидать выраженную нейтропению в течение недели и более. К недостаткам профилактики с применением ТМП/СМС можно отнести побочные эффекты, возможную миелосупрессию, развитие резистентности бактерий и кандидоза ротовой полости. В рутинной практике для пациентов с нейтропенией не рекомендуется профилактика противогрибковыми препаратами, однако она может дать положительный результат у пациентов с высоким риском развития грибковых инфекций (например, после пересадки костного мозга и применения высоких доз кортикостероидов).

Миелоидные факторы роста (гранулоцитарно-макрофагальный колониестимулирующий фактор [ГМ-КСФ] и гранулоцитарный колониестимулирующий фактор [Г-КСФ]) широко используются с целью увеличения числа нейтрофилов и профилактики развития инфекций у пациентов с тяжелой нейтропенией (например, после пересадки костного мозга и интенсивной противопухоловой химиотерапии). Эти препараты дорогостоящие. Однако если риск фебрильной нейтропении превышает 30% (в случае уровня нейтрофилов <500/мкл, при наличии инфекции на фоне предыдущего цикла химиотерапии, ассоциированных сопутствующих заболеваний или у больных старше 75 лет), показано применение факторов роста. В целом, наибольший клинический эффект достигается при начале введения ростовых факторов в течение 24 ч после завершения химиотерапии. Пациентам с нейтропенией, вызванной идросинкритической реакцией на лекарственную терапию, также могут быть показаны миелоидные ростовые факторы, особенно если ожидается, что процесс восстановления затянется. Доза Г-КСФ составляет 5 мкг/кг подкожно 1 раз в сутки; для ГМ-КСФ – 250 мкг/кг подкожно 1 раз в сутки.

Глюкокортикоиды, анаболические стероиды и витамины не стимулируют выработку нейтрофилов, но могут влиять на их распределение и разрушение. Если есть подозрение, что острая нейтропения вызвана лекарственным препаратом или токсином, прием всех потенциально связанных с этим агентов прекращают. Если нейтропения развивается на фоне приема лекарственного препарата, который снижает число нейтрофилов (например, хлорамфеникол), то выходом из этой ситуации может быть переход на альтернативную антибиотикотерапию.

Дискомфорт при стоматите и изъязвлении слизистой оболочки ротовой полости и глотки можно уменьшить полосканием физиологическим раствором или раствором перекиси водорода каждые несколько часов, с помощью пасты стоматолога или пара анастетиками (бензокаин 15 мг каждые 3–4 часа) или с помощью раствора хлоргексидина для полоскания 2 или 3 раза в сутки. Кандидоз ротовой полости или пищевода лечат с помощью нистатина (раствор для полоскания рта 400 000 – 600 000 ед 3 раза в сутки; при эзофагите – проглатывается), клотримазола в таблетках (10 мг, медленно рассасывать, 5 раз в день) или применением системных противогрибковых препаратов (например, флюконазола). При острым стоматите или эзофагите может потребоваться назначение диеты с жидкой или полутвердой пищей, для уменьшения дискомфорта могут потребоваться местные анестетики.
ХРОНИЧЕСКАЯ НЕЙТРОПЕНИЯ

Продукцию нейтрофилов при врожденной, циклической и идиопатической нейтропении можно повысить введением Г-КСФ в дозе 1–10 мкг/кг подкожно 1 раз в сутки. Эффект можно поддерживать ежедневными или периодическими инъекциями Г-КСФ в течение месяцев и лет. Длительную терапию Г-КСФ также применяют у других пациентов с хронической нейтропенией, в т.ч. у пациентов с миелодисплазией, ВИЧ и аутоиммунными заболеваниями. В целом число нейтрофилов повышается, хотя улучшения клинической картины могут быть не столь яркими, особенно у пациентов без тяжелой нейтропении. У пациентов с аутоиммунными заболеваниями или наличием трансплантатов может быть эффективно применение циклоспорина.

У некоторых пациентов при активном разрушении нейтрофилов в связи с аутоиммуным заболеванием их уровень могут повысить кортикостероиды (обычно преднизолон 0,5–1,0 мг/кг перорально 1 раз в день). Этот эффект можно поддерживать терапией Г-КСФ через день.

У некоторых пациентов со спленомегалией или секвестрацией нейтрофилов в селезенке (например, при синдроме Фелти, воспалительном лейкозе) число нейтрофилов можно повысить с помощью спленэктомии. Однако этот вариант следует применять у пациентов с тяжелой нейтропенией (например, менее 500/мкл) и серьезными инфекциями, у которых назначенная терапия была неэффективна. Пациентов необходимо вакцинировать против инфекций, вызванных Streptococcus pneumoniae, Neisseria meningitidis и Haemophilus influenzae до и после спленэктомии, поскольку она предрасполагает к развитию инфекций, вызванных этими возбудителями.

Лимфоцитопения

Лимфоцитопения – снижение общего числа лимфоцитов ниже 1000/мкл у взрослых или 3000/мкл у детей младше 2 лет. Осложнениями могут быть развитие оппортунистических инфекций и повышенный риск развития злокачественных новообразований и аутоиммунных заболеваний. Если при общем анализе крови выявляется лимфоцитоз, необходимо провести тестирование на иммунодефицит и анализ субпопуляций лимфоцитов. Лечение должно быть направлено на первичное заболевание.

Этиология

Лимфоцитопения бывает приобретенной и наследственной.

Приобретенная лимфоцитопения может сопровождать ряд других патологий (табл. 142-2).
К наиболее распространенным причинам относятся:
- дефицит белков и калорий;
- СПИД.

Недостаточное поступление с пищей белков и калорий – наиболее распространенная причина лимфоцитопении во всем мире. СПИД – наиболее распространенное инфекционное заболевание, вызывающее лимфоцитопению, которая развивается в результате разрушения CD4+ Т-клеток, инфицированных ВИЧ. Лимфоцитопения может также отражать нарушение продукции лимфоцитов вследствие разрушения структуры тимуса или лимфоузлов. При острой вирусемии ВИЧ или другими вирусами лимфоциты могут подвергаться ускоренному разрушению в связи с активным ростом числа вирусных частиц, могут накапливаться в селезенке или лимфоузлах или мигрировать в респираторный тракт.

Ятрогенная лимфоцитопения развивается после применения цитотоксических химиопрепаратов, глюкокортикоидов, высоких доз псоралена и ультрафиолетового облучения, иммуносупрессантов, лучевой терапии или дренировании грудного протока.

Симптомы и признаки
Сама по себе лимфоцитопения не проявляется никакими симптомами. Однако могут диагностироваться сопутствующие нарушения, такие как отсутствие или уменьшение миндалин или лимфоузлов, что указывает на клеточный иммунодефицит, заболевания кожи, в т.ч. алопеция, экзема, псориаз, атопический дерматит, проявления гематологической патологии, такие как бледность, петехии, желтуха и изъязвление слизистой оболочки ротовой полости, генерализованная лимфаденопатия и спленомегалия, которые позволяют предположить инфицирование ВИЧ.

Таблица 142–2. Причины лимфоцитопении

<table>
<thead>
<tr>
<th>МЕХАНИЗМ РАЗВИТИЯ</th>
<th>ПРИМЕРЫ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Приобретенная</td>
<td>СПИД</td>
</tr>
<tr>
<td></td>
<td>Другие инфекционные заболевания, в т.ч. гепатит, грипп, туберкулез, брюшной тиф и сепсис</td>
</tr>
<tr>
<td></td>
<td>Плохое питание у пациентов с алкогольной зависимостью, дефицит белков и калорий или дефицит цинка</td>
</tr>
<tr>
<td></td>
<td>Ятрогенная после применения цитотоксических химиопрепаратов, глюкокортикоидов, высоких доз псоралена и ультрафиолетового облучения, иммуносупрессантов, лучевой терапии или дренировании грудного протока</td>
</tr>
<tr>
<td></td>
<td>Системные заболевания с аутоиммунным компонентом (например, апластическая анемия, лимфома Ходжкина, миастения, анемия с потерей белка, ревматоидный артрит, почечная недостаточность, саркоидоз, системная красная волчанка, термический ожог)</td>
</tr>
<tr>
<td>Наследственность</td>
<td>Аплазия лимфопоэтических стволовых клеток</td>
</tr>
<tr>
<td></td>
<td>Атаксия-телангиэктазия</td>
</tr>
<tr>
<td></td>
<td>Синдром гипоплазии хрящевой ткани и волос</td>
</tr>
<tr>
<td></td>
<td>Идиопатическая CD4+ Т-лимфоцитопения</td>
</tr>
<tr>
<td></td>
<td>Иммунодефицит с тимомой</td>
</tr>
<tr>
<td></td>
<td>Тяжелый комбинированный иммунодефицит, связанный с дефектом γ-цепи рецептора ИЛ-2, дефицит ADA или ПНФ или неизвестный дефект</td>
</tr>
<tr>
<td></td>
<td>Синдром Вискотта–Олдрича</td>
</tr>
</tbody>
</table>

АДА – аденозиндезаминаза; ПНФ – пуриннуклеозидфосфорилаза.
У пациентов с лимфоцитопенией выявляются рецидивирующие инфекции или инфекции, вызванные малораспространенными возбудителями. *Pneumocystis jirovecii*, цитомегаловирус, корь, вторичная пневмония обычно приводят к летальному исходу. Лимфоцитопения также является фактором риска развития рака и аутоиммунных заболеваний.

Диагноз
- Клиническое подозрение (повторяющиеся или необычные инфекции).
- Общий анализ крови с исследованием лейкоцитарной формулы.
- Измерение субпопуляций лимфоцитов и уровня иммуноглобулина.

Лимфоцитопению можно подозревать у пациентов с рецидивирующими вирусными, грибковыми или паразитарными инфекциями, но нередко она выявляется случайно при проведении общего анализа крови. *P. jirovecii*, цитомегаловирус, корь или вторичная пневмония с лимфоцитопенией позволяют предположить наличие иммунодефицита. У пациентов с лимфоцитопенией измеряют численность субпопуляций лимфоцитов. Также следует провести определение уровня иммуноглобулинов с целью оценки продукции антител. У пациентов с рецидивирующими инфекциями в анамнезе проводят полную лабораторную оценку на предмет иммунодефицита, даже если результаты первоначальных тестов соответствуют норме.

Лечение
- Лечение ассоциированных инфекций.
- Лечение первичного заболевания.
- Иногда внутривенное введение иммуноглобулина.
- Возможна пересадка гемопоэтических стволовых клеток.

Приобретенная лимфоцитопения обычно купируется при устранении первичного фактора или успешном лечении первичного заболевания. Внутривенное введение иммуноглобулинов показано пациентам с хроническим дефицитом IgG, лимфоцитопенией и рецидивирующими инфекциями. Трансплантация гемопоэтических стволовых клеток может рассматриваться как вариант терапии у всех пациентов с врожденными иммунодефицитами и может дать положительный результат.

Ключевые моменты
- Лимфоцитопения чаще всего связана со СПИДом или недостаточным питанием, но также может быть наследуемой или развиваться в связи с различными инфекциями, приемом лекарственных препаратов или аутоиммунными заболеваниями.
- Для пациентов характерны рецидивирующие вирусные, грибковые или паразитарные инфекции.
- Необходимо измерять численность субпопуляций лимфоцитов и уровень иммуноглобулинов.
- Лечение обычно направлено на устранение причины, но иногда положительный результат может дать внутривенное введение иммуноглобулинов или пересадка стволовых клеток (у пациентов с врожденным иммунодефицитом).

143 Тромбоцитопения и тромбоцитарная дисфункция

Тромбоциты – фрагменты клетки, которые функционируют в системе свертывания крови. Тромбопоэтин, вырабатываемый в основном печенью как реакция на уменьшение количества мегакариоцитов костного мозга и циркулирующих тромбоцитов, стимулирует костный мозг к отшнуровке тромбоцитов из мегакариоцитов. Тромбоциты циркулируют от 7 до 10 дней. Около трети тромбоцитов секвестрирует селезенка. Количество тромбоцитов обычно от 140 000 до 440 000/мкл. Однако количество может мен-
Тромбоцитопения и тромбоцитарная дисфункция

Тромбоциты в конце концов разрушаются в процессе апоптоза, процесса независимого от селезенки. Тромбоцитарные заболевания включают:
• аномальное увеличение тромбоцитов (тромбоцитемия и реактивный тромбоцитоз);
• уменьшение тромбоцитов (тромбоцитопения);
• тромбоцитарную дисфункцию.

Этиология

Тромбоцитемия и тромбоцитоз. Эссенциальная тромбоцитемия является миелопрофиллеративным заболеванием, в основе которого лежит избыточное производство тромбоцитов вследствие клональной аномалии гемопоэтических стволовых клеток. Повышенное количество тромбоцитов обычно приводит к тромбозу, хотя у некоторых пациентов может возникнуть кровотечение.

Риск кровотечений обратно пропорционален количеству тромбоцитов и тромбоцитарной функции (табл. 143–1). Когда тромбоцитарная функция понижена (например, как результат уремии или употребления аспирина), риск кровотечения возрастает.

Тромбоцитопения. Причины тромбоцитопении могут быть классифицированы по механизмам (табл. 143–2) и включать нарушение производства тромбоцитов, повышенное секвестрирование селезенкой тромбоцитов, увеличивающееся разрушение и потребление тромбоцитов (имmunологические и неимmunологические причины), уменьшение концентрации тромбоцитов и комбинацию из всех этих механизмов.

Повышенное секвестрирование селезенкой связано со спленомегалией.

Большое количество лекарств может вызывать тромбоцитопению, вызывая иммунологические разрушения.

Среди наиболее распространенных причин тромбоцитопении можно выделить следующие:
• гестационная тромбоцитопения;
• тромбоцитопения, вызванная препаратами вследствие иммуноопосредованного разрушения тромбоцитов (обычно хинин, триметоприм/сульфаметоксазол);
• тромбоцитопения, вызванная препаратами вследствие иммуноопосредованного разрушения тромбоцитов (обычно хинин, триметоприм/сульфаметоксазол);
• тромбоцитопения, вызванная препаратами вследствие иммуноопосредованного разрушения тромбоцитов (обычно хинин, триметоприм/сульфаметоксазол);
• тромбоцитопения, вызванная препаратами вследствие иммуноопосредованного разрушения тромбоцитов (обычно хинин, триметоприм/сульфаметоксазол);
• тромбоцитопения, вызванная препаратами вследствие иммуноопосредованного разрушения тромбоцитов (обычно хинин, триметоприм/сульфаметоксазол);
• тромбоцитопения, вызванная препаратами вследствие иммуноопосредованного разрушения тромбоцитов (обычно хинин, триметоприм/сульфаметоксазол);
• тромбоцитопения, вызванная препаратами вследствие иммуноопосредованного разрушения тромбоцитов (обычно хинин, триметоприм/сульфаметоксазол).

Тромбоцитарная дисфункция. Тромбоцитарная дисфункция может быть связана с тромбоцитарным дефектом или с внешними факторами, которые влияют на нормальный уровень тромбоцитов. Дисфункция может быть наслед-

Табл. 143–1. Количество тромбоцитов и риск кровотечения

<table>
<thead>
<tr>
<th>КОЛИЧЕСТВО ТРОМБОЦИТОВ</th>
<th>РИСК КРОВОТЕЧЕНИЯ *</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 50 000/мкл</td>
<td>Минимально</td>
</tr>
<tr>
<td>20 000–50 000/мкл</td>
<td>Небольшое кровотечение после травмы</td>
</tr>
<tr>
<td>< 20 000/мкл</td>
<td>Внезапное кровотечение</td>
</tr>
<tr>
<td>< 5 000/мкл</td>
<td>Тяжелое, возможно, угрожающее для жизни внезапное кровотечение</td>
</tr>
</tbody>
</table>

* Риск кровотечений может также быть связан с пониженной тромбоцитарной функцией (вследствие уремии или употребления аспирина)*
Симптомы и признаки

Следствием повреждения тромбоцитов является типичная картина кровотечения.

- Множественные кровоизлияния на коже (наиболее проявляется на нижней части ног).
- Разрозненные мелкие кровоподтеки в местах небольших ушибов.
- Кровотечения из слизистых (ротоглотки, носовой, гастроэнтерологии, мочеполовой).
- Чрезмерное кровотечение после хирургического вмешательства.

Выраженное кишечное кровотечение и кровотечение в ЦНС могут быть опасны для жизни. Кровотечения в тканях (например, глубокие висцеральные гематомы или гемартрозы) не сопровождаются тромбоцитопенией, вызывающей немедленное неглубокое кровотечение. Кровотечение в тканях (обычно появляющееся в период до дня после травмы) предполагает нарушения коагуляции крови (например, гемофилия).

Диагностика

- Клинические проявления кровоизлияний и кровотечений из слизистых.
- Общий анализ крови с тромбоцитами, исследование свертываемости, мазок периферической крови.
- Иногда аспирация костного мозга.
- Иногда исследование антигена и фактора активности Виллебранда.

Тромбоцитарные нарушения наблюдаются у пациентов с кровоизлияниями и кровотечениями.

Таблица 143-2. КЛАССИФИКАЦИЯ ТРОМБОЦИТОПЕНИИ	Условия
Уменьшение или отсутствие мегакариоситов в костном мозге	Апплазическая анемия
	Лейкемия
	Миелосупрессивные препараты (например, гидроксимочевина, интерферон альфа-26, химотерапевтические препараты)
	Пароксизмальная ночные гемоглобинурия (некоторые пациенты)
Уменьшение производства тромбоцитов, несмотря на присутствие мегакариоцитов в костном мозге	Выведенная алкогольным тромбоцитопенией
	Связанная с ВИЧ тромбоцитопения
	Мнелодиспластический синдром (некоторые формы)
	Дефицит витамина B12 или фолиевой кислоты
Тромбоцитарное секвестрирование в увеличенной селезенке	Цирроз печени с конгестивной спленомегалией
	Болезнь Гоше
	Миелофиброз с миелоидной металлазией
Иммунологические разрушения	Заболевания соединительной ткани
	Тромбоцитопения, вызванная препаратами
	Тромбоцитопения, связанная с ВИЧ
	Иммунная тромбоцитопения
	Лимфопролиферативные нарушения
	Неонатальная апоиммунная тромбоцитопения
	Посттрансфузионная пурпура
	Беременность (гестационная тромбоцитопения)
Неиммунологические нарушения	Диссеминированное внутрисосудистое свертывание
	Сепсис
	Определенные систематические инфекции (например, гепатит, вирус Эпштейна – Барр, цитомегаловирус или вирус лихорадки денге)
	Тромбоцитопения при остром респираторном заболевании
	Тромботическая тромбоцитопеническая пурпура – гемолитически-уремический синдром
Дилуция	Массовая замена красных кровяных телец или обменное переливание крови (снижение жизнеспособности тромбоцитов, хранящихся в крови)
ям слизистой. Необходимо назначить общий
анализ крови с количеством тромбоцитов, ис-
следование свертываемости крови и мазка пе-
риферической крови. Гипертромбоцитоз и тром-
боцитопения диагностируются на основании
определения количества тромбоцитов; исследо-
вания свертываемости крови нормальны, пока
нет одновременной коагулопатии. Дисфункцию
тромбоцитов подозревают и у пациентов с нор-
мальным общим анализом крови, количеством
тромбоцитов, МНО и слегка увеличенным АЧТВ.

Тромбоцитопения. У пациентов с тромбо-
цитопенией мазок периферической крови мо-
жет помочь выявить причину заболевания (табл.
143–3). Если мазок показывает отличные от
тромбоцитопении нарушения, такие как ядро-
содержащие эритроциты или аномальные или
незрелые лейкоциты, то необходима аспирация
костного мозга. Аспирация костного мозга дает
возможность оценить количество и образова-
ние мегакариоцитов и является определяющим
tестом для многих заболеваний, затрагивающих
костный мозг. Тем не менее нормальное число и
образование мегакариоцитов не всегда означа-
et нормальное производство тромбоцитов. На-
пример, у пациентов с иммунной тромбоцито-
пенией производство тромбоцитов может быть
пониженным, в то время как будет наблюдать
нормальное образование и увеличенное число
мегакариоцитов. Если костный мозг в порядке, а
селезенка увеличена, то повышенная секвестра-
cия селезенки является наиболее вероятной
причиной тромбоцитопении; если костный мозг
в норме и селезенка не увеличена, то избыточ-
ное тромбоцитарное разрушение является наи-
более вероятной причиной. Измерение тромбо-
цитарных фрагментов не является клинически
необходимым. Для выявления ВИЧ используют
tесты на ВИЧ.

Подозреваемая дисфункция тромбо-
cитов. Подозрение на то, что тромбоцитарная
dисфункция была вызвана применением препа-
ратов, появляется в том случае, если симптомы
появляются после начала применения лекарств,
которые являются потенциальными возбуди-
tелями. Наследственную причину можно запо-
dозрить, если всю жизнь пациент страдает от
синяков, длительной, обильной менструации,
кровотечений после удаления зуба или других
хирургических вмешательств. В случае подо-
зрения наследственных причин нужно провести
исследование на антител и активность фактора
Виллебранда. Тромбоцитарная дисфункция,
вызванная системными нарушениями, как пра-
вило, имеет легкую форму и не имеет большого
клинического значения. Таким пациентам не
нужно делать гематологических тестов.

Лечение
■ Избегать применения лекарств, вызывающих
заболевание.
■ Ограничить переливания крови и тромбоцитов.

<table>
<thead>
<tr>
<th>Результаты</th>
<th>Условия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нормальные</td>
<td>Тромбоцитопения, вызванная препарами</td>
</tr>
<tr>
<td>эритроциты</td>
<td>Гестационная тромбоцитопения</td>
</tr>
<tr>
<td>и лейкоциты</td>
<td>Тромбоцитопения, связанная с ВИЧ</td>
</tr>
<tr>
<td></td>
<td>Иммунная тромбоцитопения</td>
</tr>
<tr>
<td></td>
<td>Посттрансфузионная пурпура</td>
</tr>
<tr>
<td>Фрагментация</td>
<td>Метастатический рак</td>
</tr>
<tr>
<td>эритроцитов</td>
<td>Диссеминированное внутрисосудистатое свертывание</td>
</tr>
<tr>
<td>(шизоциты)</td>
<td>Презклампсия с ДВС</td>
</tr>
<tr>
<td></td>
<td>Тромбоцитарная тромбоцитопеническая пурпура и гемолитико-уремический синдром</td>
</tr>
<tr>
<td>Аномалии лейкоцитов</td>
<td>Гиперсегментированные поли-</td>
</tr>
<tr>
<td></td>
<td>морфовцелевые лейкоциты при</td>
</tr>
<tr>
<td></td>
<td>мегалобластной анемии</td>
</tr>
<tr>
<td></td>
<td>Незрелые клетки или увеличение</td>
</tr>
<tr>
<td></td>
<td>зрелых лимфоцитов при лейкоах</td>
</tr>
<tr>
<td></td>
<td>Заметное снижение гранулоцитов</td>
</tr>
<tr>
<td></td>
<td>при апластической анемии</td>
</tr>
<tr>
<td>Частые большие</td>
<td>Синдром Бернара–Сулье</td>
</tr>
<tr>
<td>тромбоциты</td>
<td>Расстройства, связанные с миози-</td>
</tr>
<tr>
<td>(приближающиеся</td>
<td>ном, тяжелой целью 9, немышечны-</td>
</tr>
<tr>
<td>к размеру эритроцитов)</td>
<td>ми генами (MYP6)</td>
</tr>
<tr>
<td></td>
<td>Другие близкие к тромбоцитопении</td>
</tr>
<tr>
<td></td>
<td>заболевания</td>
</tr>
<tr>
<td>Аномалии эритроцитов,</td>
<td>Миелодисплазия</td>
</tr>
<tr>
<td>ядерных эритроцитов</td>
<td></td>
</tr>
<tr>
<td>и незрелые</td>
<td></td>
</tr>
<tr>
<td>гранулоциты</td>
<td></td>
</tr>
</tbody>
</table>

ДВС – диссеминированное внутрисосудистое свертывание.
препараты, необходимо найти им замену или прекратить вообще употреблять их.

Пациентам могут потребоваться переливания тромбоцитов, но переливание производится в очень небольшом количестве случаев. Профилактические переливания тромбоцитов следует использовать осторожно, т.к. при частом применении они могут потерять свою эффективность в связи с развитием алоантител. При дисфункции тромбоцитов или тромбоцитопении, вызванной снижением производства, переливания являются резервом для пациентов с сильными кровотечениями, тяжелой тромбоцитопенией (например, с количеством тромбоцитов менее 10 000 /мкл) или в случае инвазивных процедур. При тромбоцитопении, вызванной разрушениями тромбоцитов, переливания необходимы при опасных для жизни кровотечениях или кровотечениях ЦНС.

ПРИОБРЕТЕННАЯ ДИСФУНКЦИЯ ТРОМБОЦИТОВ

Приобретенная дисфункция тромбоцитов, которая достаточно распространена, может быть вызвана аспирином, другими НПВП и системными нарушениями.

Приобретенные аномалии тромбоцитарной функции очень похожи. Причины их возникновения включают такие факторы, как:

• лекарства;
• системные нарушения;
• искусственное кровообращение.

Приобретенная дисфункция тромбоцитов подозревается и диагностируется, когда у пациента наблюдается изолированное продление кровотечения, а другие возможные диагнозы исключены. Изучение агрегации тромбоцитов не требуется.

Лекарства. Дисфункцию тромбоцитов могут вызывать аспирин и другие НПВП, а также ингибиторы рецептора тромбоцитов P2Y12 АДФ (например, клопидогрел, прасугрел, тикагрелор). Иногда это происходит случайно (например, когда препараты предназначены для снятия боли и воспаления), а иногда и в терапевтических целях (например, когда аспирин или ингибиторы P2Y12 используются для профилактики инсульта или коронарного тромбоза).

Аспирин и НПВП предотвращают производство циклооксигеназопосредованного тромбоксана A2. Эффект может длиться от 5 до 7 дней. Аспирин немного увеличивает кровотечение у здоровых людей, но он также может заметно увеличить кровотечение у больных с базовой дисфункцией тромбоцитов или сильным нарушением коагуляции (напри мер, у пациентов, получавших гепарин, или у пациентов с тяжелой формой гемофилии). Клопидогрел, прасугрел и тикагрелор могут заметно снизить функцию тромбоцитов и увеличить кровотечение.

Системные нарушения. Многие заболевания (например, миелопролиферативные и миелодиспластические расстройства, уремия, макроглобулинемия и множественная миелома, цирроз печени, синдром красной волчанки) могут нарушить функцию тромбоцитов.

Уремия продлевает кровотечение при помощи неизвестных механизмов. Если кровотечение наблюдается клинически, то оно может быть уменьшено с помощью интенсивного диализа, применения криопрепаратов или введения десмопрессина. Увеличение концентрации гемоглобина до >10 г/дл при переливании или при применении эритропоэтина также уменьшает кровотечение.

Искусственное кровообращение. Тромбоциты могут стать дисфункциональными, продлевая кровотечение, из-за того что во время искусственного кровообращения кровь циркулирует с помощью насоса-оксигенатора. Механизм представляет собой активацию фибринолиза на поверхности тромбоцитов с результирующей потерей гликопротеина Ib/IX связывающего места для фактора Виллебранда. Независимо от количества тромбоцитов, пациентам с сильными кровотечениями после искусственного кровообращения часто назначают переливания тромбоцитов. Применение апротинина (ингибитор протеаз, который нейтрализует активность протеаз) в течение искусственного кровообращения может сохранить функцию тромбоцитов и снизить потребность в переливании крови.
НАСЛЕДСТВЕННЫЕ ВНУТРЕННИЕ НАРУШЕНИЯ ТРОМБОЦИТОВ

Наследственные нарушения тромбоцитов встречаются редко и вызывают пожизненную склонность к кровотечению. Диагноз подтверждается по результатам исследования агрегации тромбоцитов. Переливание тромбоцитов, как правило, необходимо для контроля над серьезными кровотечениями.

Нормальный гемостаз требует адгезии и активации тромбоцитов

Для адгезии (т.е. тромбоциты выделяют сосудистый субэндотелий) необходим фактор Виллебранда (ФВ) и тромбоцитарный гликопротеин Ib/IX комплекс.

Активация способствует агрегации тромбоцитов и связыванию фибриногена. Для нее необходим гликопротеин IIb/IIIa комплекс. Активация включает выпуск аденоизиндифосфата (АДФ) из гранул хранения тромбоцитов и превращение арахидоновой кислоты в тромбоксан A2 при помощи циклооксигеназопосредованной реакции. Затем АДФ и тромбоксан A2 вызывают изменения в тромбоцитарном IIb/IIIa комплексе, которые, в свою очередь, увеличивают связывание фибриногена, позволяя тромбоцитам агрегировать.

Наследственные внутренние тромботические нарушения могут включать дефект на любом этапе и в любом субстрате. Это заболевание подозревают у пациентов с пожизненным нарушением свертываемости крови, нормальным количеством тромбоцитов и нормальными результатами исследования коагуляции. Диагноз основан на результатах теста на агрегацию тромбоцитов. Стоит отметить, что тесты на агрегацию тромбоцитов не являются количественными и интерпретация результатов часто неинформативна (табл. 143–4).

Нарушения адгезии. Синдром Бернара–Сулье является редким аутосомно-рецессивным заболеванием, при котором ухудшается адгезия тромбоцитов через дефект в гликопротеин Ib/IX комплексе. Кровотечение может быть обильным. Размеры тромбоцитов увеличиваются. Они не агрегируют с ристоцетином, но агрегируют с АДФ, кольлагеном и адреналином.

Большие тромбоциты ассоциируют с функциональными нарушениями и они характерны при синдроме Чедиака–Хигаси и аномалии Мая–Хегглина, тромбоцитопеническом расстройстве с аномальными лейкоцитами.

Переливание тромбоцитов необходимо для контроля над серьезными кровотечениями.

Болезнь Виллебранда (см. гл. «Болезнь Виллебранда») связана с дефицитом или дефектом фактора Виллебранда (ФВ), который необходим для адгезии тромбоцитов. Заболевание лечится при помощи десмопрессина или замещения фактора с пастеризованным среднеочищенным концентратом фактора VIII с фактором Виллебранда.

Нарушения активации. Нарушение активации тромбоцитов является наиболее распространенным наследственным внутренним тромбоцитарным нарушением и вызывает умеренное кровотечение. Они могут возникнуть в результате снижения АДФ в гранулах тромбоцитов (недостаток места для хранения), неспособности генерировать тромбоксан A2.

<table>
<thead>
<tr>
<th>НАРУШЕНИЕ</th>
<th>КОЛЛАГЕН, АДРЕНАЛИН, НИЗКОДОЗИРОВАННЫЙ АДФ</th>
<th>ВЫСОКОДОЗИРОВАННЫЙ АДФ</th>
<th>РИСТОЦЕТИН</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нарушение активации тромбоцитов</td>
<td>Сниженный</td>
<td>Нормальный</td>
<td>Нормальный</td>
</tr>
<tr>
<td>Тромбастения</td>
<td>Остается</td>
<td>Остается</td>
<td>Нормальный</td>
</tr>
<tr>
<td>Нарушение адгезии тромбоцитов</td>
<td>Нормальный</td>
<td>Нормальный</td>
<td>Сниженный</td>
</tr>
</tbody>
</table>

АДФ – аденозиндифосфатная нижняя граница нормы.
из арахидоновой кислоты или из-за неспособности тромбоцитов к агрегации в ответ на тромбоксан А2. Тесты на агрегацию тромбоцитов выявляют пониженную агрегацию после воздействия коллагена, адреналина, а также низких уровней АДФ и нормальную агрегацию после воздействия высоких уровней АДФ. Та же картина может быть результатом использования НПВП или аспирина, эффект от которых может сохраняться в течение нескольких дней. Поэтому тесты на агрегацию тромбоцитов не следует делать пациентам, которые недавно принимали эти препараты.

Тромбастения (болезнь Гланцмана) является редким аутосомно-рецессивным заболеванием, вызывающим дефекты тромбоцитарного гликопротеин IIb / IIIa комплекса; тромбоциты не могут агрегировать. У больных могут возникать тяжелые кровотечения слизистой оболочки (например, носовые кровотечения, которые прекращаются только после перевязки и переливания тромбоцитарного концентрата). Диагноз подтверждается при обнаружении того, что тромбоциты не могут агрегировать после воздействия адреналина, коллагена или даже высоких уровней АДФ, но могут временно агрегировать после воздействия ристоцетином. Переливание тромбоцитов необходимо для контроля над серьезными кровотечениями.

БОЛЕЗНЬ ВИЛЛЕБРАНДА

Болезнь Виллебранда (БВ) представляет собой наследственный дефицит фактора Виллебранда (ФВ), который вызывает дисфункцию тромбоцитов. Обычно сопровождается умеренными кровотечениями. Скрининг-тесты показывают нормальное количество тромбоцитов и немного увеличенное АЧТВ. Диагноз ставится на основании низкого уровня антигена ФВ и нарушенной активности кофактора ристоцетина. Лечение включает в себя контроль за кровотечениями с помощью заместительной терапии (пастеризованный среднечистый плазменный концентрат фактора VIII с фактором Виллебранда) или десмопрессином.

ФВ синтезируется и секретируется сосудистым эндотелием, чтобы стать частью периваскулярной матрицы. ФВ способствует адгезии тромбоцитов в гемостазе, скрепляясь с рецептором на мемbrane поверхности тромбоцитов (гликопротеина Ib/IX), таким образом присоединяя тромбоциты к стенке сосуда. ФВ также требуется для поддержания нормального уровня плазменного фактора VIII. Уровень ФВ может временно возрастать при стрессе, физических упражнениях, беременности, воспалениях или инфекциях.

Выделяют 3 типа болезни Виллебранда.
- **Тип 1**: количественный дефицит ФВ, который является наиболее распространенной формой и аутосомно-доминантным заболеванием.
- **Тип 2**: качественные нарушения в синтезе ФВ, которые могут возникнуть в результате различных генетических аномалий. Является аутосомно-доминантным заболеванием.
- **Тип 3**: редкое аутосомно-рецессивное нарушение, при котором в гомозиготах не определяется ФВ.

БВ, как и гемофилия А, является наследственным заболеванием, которое в тяжелой форме может вызвать дефицит фактора VIII. Но этот дефицит, как правило, является умеренным.

Симптомы и признаки

Проявления кровотечения варьируются от легкой до умеренной формы и включают небольшие кровоподтеки, кровотечения слизистой оболочки, кровотечения при мелких порезах кожи, которые могут останавливаться и возникать через несколько часов, иногда увеличение межуточного кровотечения, и аномальные кровотечения после хирургических вмешательств (например, удаление зуба, удаление мицдалин). Тромбоциты достаточно хорошо функционируют, так что петехии и пурпура не возникают.

Диагностика

- Общий антиген ФВ в плазме, функция ФВ и уровень плазменного фактора VIII.
- БВ подозревают у больных с нарушением свертываемости крови, особенно с зарегистрированными случаями этого заболевания в семье. Скрининг-тесты коагуляции показывают нормальное количество тромбоцитов, нормаль-
Глава 143. Тромбоцитопения и тромбоцитарная дисфункция

ный МНО и редко немного увеличенное АЧТВ. Тестирование времени кровотечения неточно и больше не используется. Для подтверждения диагноза требуется определение уровня общего антигена ФВ в плазме, функции ФВ, определяемой способностью плазмы поддерживать агглютинацию нормальных тромбоцитов при помощи ристоцетина (активность ристоцетинового кофактора); уровень фактора плазменного фактора VIII. Стимулы, которые временно повышают уровень ФВ, могут привести к ложноотрицательным результатам в случае умеренной формы БВ; поэтому тесты, возможно, необходимо повторить.

В общей (тип 1) форме БВ результаты согласованы, т.е. антиген ФВ, функция ФВ и уровень фактора VIII в плазме понижен в равной степени. Степень депрессии варьирует примерно от 15 до 60% от нормального и определяет степень тяжести аномального кровотечения у пациента. Уровень антигена ФВ может быть и 40% от нормы у здоровых людей с группой крови O (I).

Второй тип подозревают в случае несоответствия результатов теста, когда антиген ФВ выше, чем ожидалось для этой степени нарушения в активности кофактора ристоцетина (антиген ФВ выше, чем ожидалось, поскольку дефект ФВ 2 типа качественный, а не количественный). Диагноз подтверждается выявлением снижения концентрации больших мультимеров ФВ при электрофорезе в агарозном геле. Существуют четыре варианта БВ второго типа, отличающихся по функциональным отклонениям молекулы ФВ.

У больных с 3 типом БВ фактор Виллебранда не определяется и наблюдается заметный дефицит фактора VIII.

Лечение

■ Десмопрессин.
■ Введение ФВ в случае необходимости.

Пациенты лечатся только тогда, когда у них возникает сильное кровотечение или они проходят инвазивные процедуры (например, хирургия, удаление зубов).

Десмопрессин является аналогом антидиуретического гормона (вазопрессин), который стимулирует высвобождение ФВ в плазму и может повышать уровень фактора VIII. Десмопрессин может быть полезен при 1 типе БВ. В остальных типах он бесполезен, а в некоторых и вреден. Для обеспечения нормальной реакции на препарат врачи дают пациентам пробную дозу и измеряют реакцию антигена ФВ. Введение десмопрессина 0,3 мкг/кг в 50 мл 0,9% физраствора внутривенно продолжительностью от 15 до 30 минут может позволить больному пройти небольшие вмешательства (например, экстракция зуба, небольшие хирургические вмешательства) без необходимости заместительной терапии. Если все же заместительная терапия необходима, десмопрессин может снизить требуемую дозу. Одна доза десмопрессина действует в течение 8–10 часов. Для возобновления запасов ФВ необходимо около 48 часов, что позволяет второй инъекции десмопрессина быть такой же эффективной, как первоначальная доза препарата.

При необходимости проведения более серьезных процедур или для пациентов с II или III типом БВ лечение включает в себя замену ФВ вливанием плазменного пастеризованного среднего чистого концентрата фактора VIII, который содержит компоненты ФВ. В этих концентратах вирусы инактивированы и, следовательно, не передают ВИЧ-инфекцию или гепатит. Эти концентраты более предпочтительны по сравнению с ранее использовавшимся криофрессином, т.к. не вызывают инфекций, передаваемых при трансфузии. Высокоочищенный концентрат фактора VIII получают путем иммуноаффинной хроматографии, но он не содержит ФВ и не должен быть использован.

Ключевые моменты

■ У больных наблюдаются легкое кровоизлияние и пурпура, как правило, слизистой оболочки; реже гемартроз.
■ Скрининг-тесты показывают нормальное количество тромбоцитов, нормальное МНО, а иногда и немного увеличенное АЧТВ.
■ Тесты включают в себя общий антиген плазменного ФВ в плазме, ФВ функцию (анализ ФВ ристоцетина) и уровень фактора VIII в плазме.
■ Лечение применяется при сильном кровотечении или перед инвазивной процедурой;
ИММУННАЯ ТРОМОБОЦИТОПЕНИЯ
(идиопатическая тромбоцитопеническая пурпURA; иммунная тромбоцитопеническая пурпURA; ИТП)

Иммунная тромбоцитопения (ИТП) является нарушением свертываемости крови, вызванным тромбоцитопенией, не связанной с системными заболеваниями. Это заболевание является хроническим у взрослых и, как правило, острым и самокупирующимся у детей. Размер селезенки нормальный. При диагностике другие расстройства необходимо исключить на основе выборочных тестов. Лечение включает в себя кортикостероиды, спленэктомию, иммунодепрессанты и агонисты тромбопоэтина. В случае кровотечения, угрожающего для жизни, необходимо назначить переливания тромбоцитов, внутривенные кортикостероиды, внутривенное анти-D иммуноглобулин и ВВИГ.

ИТП обычно возникает в результате действия аутоантител, направленных против структурных антигенов тромбоцитов. В детстве ИТП, аутоантитело может быть связано с вирусными антигенами. Триггер у взрослых неизвестен.

Симптомы и признаки
Симптомами и признаками являются петехии, пурпура и кровотечение слизистой. Желудочно-кишечные кровотечения и гематурия при ИТП являются редкостью. Селезенка не увеличена, за исключением случаев заражения сопутствующей детской вирусной инфекцией. ИТП также связана с повышенным риском тромбоза.

Диагностика
- Общий анализ крови с тромбоцитами, мазок периферической крови.
- В некоторых случаях аспирация костного мозга.
- Исключение других тромбоцитопенических заболеваний.
- ИТП подозревают у пациентов с изолированной тромбоцитопенией (т.е. в остальном нормальный общий анализ крови и мазок периферической крови). Поскольку отсутствуют конкретные проявления ИТП, то причины изолированной тромбоцитопении (например, лекарства, алкоголь, лимфопролиферативные заболевания, другие аутоиммунные заболевания, вирусные инфекции) должны быть исключены при проведении клинической оценки и тестирования. Как правило, больным назначают исследования коагуляции, печеночные пробы и анализы на гепатит С и ВИЧ. Тест на анти tromboцитарные антитела является бессмысленным для диагностики и лечения.

Для постановки диагноза исследования костного мозга не требуется, но его следует провести в случаях, когда в крови или мазке крови в дополнение к тромбоцитопении обнаружены аномалии; когда клинические признаки не являются типичными; если пациенты не реагируют на стандартные методы лечения. У пациентов с ИТП исследование костного мозга выявляет нормальное или немного повышенное число мегакариоцитов в остальном нормального образца костного мозга.

Прогноз
Дети обычно выздоравливают спонтанно (даже от тяжелой тромбоцитопении) в течение нескольких недель или месяцев.

У взрослых может возникнуть спонтанная ремиссия, но это редко происходит после первого года заболевания. Однако у многих пациентов заболевание протекает в мягкой форме (т.е. количество тромбоцитов > 30 000 /мкл) с минимальным кровотечением или вообще без него; такие случаи встречаются чаще, чем считалось ранее, многие из них, ранее обнаруженные при автоматизированном подсчете тромбоцитов, сейчас определяются с помощью общего анализа крови. У других больных наблюдается значительная симптоматическая тромбоцитопения, хотя случаи опасных для жизни кровотечений и смерти редки.

Лечение
- Пероральные кортикостероиды.
- Внутривенный иммуноглобулин (ВВИГ).
- Внутривенный анти-D иммуноглобулин.
- Спленэктомия.
Агонисты тромбоэпопоэтина.
Ритуксимаб.
Другие иммунодепрессанты.
При тяжелых кровотечениях: ВВИГ, внутривенное введение анти-D иммуноглобулина, внутривенное введение кортикостероидов и/или переливание тромбоцитов.

Взрослым с кровотечением и количеством тромбоцитов <30 000/мкл на начальном этапе обычно назначают пероральные кортикостероиды (например, преднизон 1 мг/кг перорально 1 раз в день). Альтернативой (но менее эффективной) кортикостероидному режиму является дексаметазон 40 мг перорально 1 раз в день в течение 4 дней. Если присутствует сильное кровотечение или есть необходимость быстро увеличить количество тромбоцитов, то к кортикостероидам может быть добавлен ВВИГ или внутривенный анти-D иммуноглобулин. У большинства пациентов количество тромбоцитов увеличивается через 2–4 недели; однако при постепенном уменьшении применения кортикостероида у пациентов возникает рецидив. Повторное лечение кортикостероидами может быть эффективным, но увеличивает риск побочных эффектов. Побочные эффекты. Прием кортикостероидов следует прекратить после первых нескольких месяцев; нужно попробовать другие препараты для избежания спленэктомии.

При спленэктомии можно достичь полной ремиссии примерно у двух третей пациентов с рецидивом, но, как правило, она проводится больным с тяжелой тромбоцитопенией, кровотечениями и может не подойти больным с легкой формой заболевания. Если тромбоцитопению можно контролировать при помощи медикаментозной терапии, спленэктомию часто откладывают на 6–12 месяцев, чтобы обеспечить возможность спонтанной ремиссии.

Вторая линия медицинской терапии предназначена для пациентов, которые стремятся отложить спленэктомию в надежде на спонтанную ремиссию; тех, кто не является кандидатами для спленэктомии или отказывается от нее, и тех, для кого спленэктомия неэффективна. У suchих пациентов, как правило, количество тромбоцитов <10 000 до 20 000/мкл (и, следовательно, подвержены риску кровотечения). Вторая линия медицинской терапии включает агонисты тромбоэпопоэтина, ритуксимаб и другие иммунодепрессанты. Уровень восприимчивости к агонистам тромбоэпопоэтина, таким как ромипластин (вводится от 1 до 10 мкг/кг подкожно 1 раз в неделю) и эльтромбопаг (от 25 до 75 мг перорально один раз в день), более 85%. Тем не менее, агонисты тромбоэпопоэтина нужно вводить непрерывно, чтобы поддерживать число тромбоцитов >50 000/мкл. Восприимчивость к ритуксимабу (375 мг/м² внутривенно 1 раз в неделю в течение 4 недель) достигает 57%, но только 21% взрослых пациентов остаются в ремиссии после 5 лет. Пациентам с тяжелой симптоматической тромбоцитопенией, не восприимчивым к другим препаратам, могут потребоваться интенсивные иммуносупрессии с такими лекарствами, как циклофосфамид и азатиоприн.

Детям, как правило, назначают поддерживающее лечение, т.к. большинство из них выздоравливает спонтанно. Даже после нескольких месяцев или лет тромбоцитопении у большинства детей наблюдаются спонтанные ремиссии. При возникновении кровотечений слизистой могут быть назначены кортикостероиды или ВВИГ. Применение кортикостероидов и ВВИГ является спорным, т.к. увеличившееся количество тромбоцитов может не улучшить клинический исход. Спленэктомия детям делается редко. Однако если в течение 6 и более месяцев наблюдается тяжелая симптоматическая тромбоцитопения, то начинают рассматривать возможность проведения спленэктомии.

У детей и взрослых с ИТП и опасными для жизни кровотечениями быстрая фагоцитарная блокада достигается применением ВВИГ 1 г/кг 1 раз в сутки в течение 1–2 дней или 1 дозы внутривенно анти-D иммуноглобулина 75 мкг/кг. Эта процедура обычно вызывает увеличение количества тромбоцитов в течение 2–4 дней, но этот уровень сохраняется лишь в течение всего 2–4 недель. Высокодозированный метилпреднизолон (1 г внутривенно 1 раз в сутки в течение 3 дней) дешевле ВВИГ или внутривенного анти-D иммуноглобулина, более прост в применении, но менее эффективен. Пациентам с ИТП и опасными для жизни кровотечениями также назначают переливания тромбоцитов. Перели-
вание тромбоцитов не используют в профилактических целях.
Пероральные кортикостероиды, ВВИГ или внутривенный анти-D иммуноглобулин также могут применяться при временном повышении количества тромбоцитов, необходимом при удалении зубов, родах, хирургических вмешательствах или других инвазивных процедурах.

Ключевые моменты
- Иммунная система разрушает циркулирующие тромбоциты и в то же время атакует мегакариоциты костного мозга, тем самым понижая производство тромбоцитов.
- Другие причины изолированной тромбоцитопении (например, лекарства, алкоголь, лимфопролиферативные расстройства, аутоиммune заболевания, вирусные инфекции) должны быть исключены.
- У детей обычно возникают спонтанные ремиссии; у взрослых спонтанная ремиссия может наступить в течение первого года, после года она маловероятна.
- Кортикостероиды (а иногда ВВИГ или внутривенный анти-D иммуноглобулин) являются первой линией лечения кровотечения или тяжелой тромбоцитопении.
- Проведение спленэктомии эффективно, но ее назначают пациентам, у которых медикаментозная терапия неэффективна, или тем, у которых болезнь сохраняется после 12 месяцев терапии.
- Переливание тромбоцитов применяется только при наличии опасного для жизни кровотечения.

ТРОМБОЦИТОПЕНИЯ, ВОЗНИКАЮЩАЯ ИЗ-ЗА СЕЛЕЗЕНОЧНОЙ СЕКВЕСТРАЦИИ

Повышение селезеночной секвестрации тромбоцитов может происходить вследствие различных расстройств, вызывающих спленомегалию. Хотя тромбоцитопения при циррозе связана с сокращением производства тромбоцитов в печени (и последующим уменьшением образования тромбоцитов), тромбоциты секвестрируются при других формах застойной спленомегалии.

Количество тромбоцитов обычно более 30 000/мкл, пока расстройство, вызывающее спленомегалию, также не ухудшает выработку тромбоцитов (например, при миелофиброзе с миелоидной метаплазией). Секвестрируемые тромбоциты высвобождаются из селезенки при помощи адреналина и, следовательно, могут быть доступны во время стресса. Поэтому тромбоцитопения, обусловленная только селезеночным секвестрированием, редко вызывает кровотечение. У больных с нормальной функцией печени спленэктомия корректирует тромбоцитопению, но спленэктомию назначают только при тяжелой тромбоцитопении из-за поражения костного мозга.

ДРУГИЕ ПРИЧИНЫ ТРОМБОЦИТОПЕНИИ

Разрушение тромбоцитов может развиваться вследствие иммунологических причин (вирусная инфекция, лекарства, нарушения соединительной ткани или лимфопролиферативные заболевания, переливание крови) или неиммунологических причин (сепсис, острый респираторный дистресс-синдром). Симптомами заболевания являются петехии, пурпура, кровотечение слизистой. Результаты лабораторных исследований зависят от причины. Анализ может быть единственным указанием на диагноз. Лечение направлено на исправление основного расстройства.

Острый респираторный дистресс-синдром. У больных с острым респираторным дистресс-синдромом может развиться неиммунологическая тромбоцитопения, возможно, вторичная по отношению к накоплению тромбоцитов в легочных капиллярах.

Переливание крови. Посттрансфузионная пурпура вызывает иммунологические разрушения тромбоцитов, неотличимые от иммунной тромбоцитопении (ИТП), за исключением наличия истории переливания крови в течение предшествующих 7–10 дней. У больных, как правило, женщин, не хватает тромбоцитарного антигена (PLA-1), присутствующего у многих людей. Переливание PLA-1-положительных тромбоцитов
стимулирует образование анти-PLA-1 антител, которые (при помощи неизвестного механизма) могут вступать в реакцию с PLA-1-отрицательными тромбоцитами пациента. Тяжелая тромбоцитопения спадает после 2–6 недель терапии. Лечение с помощью ВВИГ обычно проходит успешно.

Заболевания соединительной ткани и лимфопролиферативные заболевания. Заболевания соединительной ткани (например, СКВ) или лимфопролиферативные заболевания могут вызывать иммунологическую тромбоцитопению. Кортикостероиды и обычные методы лечения ИТП являются эффективными; лечение основного заболевания не всегда продлится ремиссию.

Иммунологические расстройства, вызванные лекарствами. Препараты, вызывающие тромбоцитопению, включают:
- Хинин;
- Триметоприм/сульфаметоксазол;
- Ингибиторы гликопротеина IIb/IIIa (например, азисимаб, эпифибатид, тирофибан);
- Гидроксипротазид;
- Карбамазепин;
- Ацетаминофен;
- Хлорпропамид;
- Ранитидин;
- Рифампин;
- Вапоксин.

Тромбоцитопения, вызванная препаратами, обычно возникает, когда препарат связан с образованием тромбоцитов, создает новый и «чужой» антиген, вызывая иммунную реакцию. Это расстройство не отличается от ИТП, за исключением истории приема лекарств. Когда употребление препарата прекращается, количество тромбоцитов обычно начинает увеличиваться в течение 1–2 дней и восстанавливается до нормального в течение 7 дней.

Гепарин-индукционная тромбоцитопения (ГИТП) отмечается у 1% пациентов, получавших нефракционированный гепарин. ГИТП может возникать даже при очень низких дозах гепарина (например, при использовании в качестве промывки при сохранении внутривенно- или внутриarterиального катетера открытым). Этот механизм, как правило, является иммунологическим. Кровотечение возникает редко; чаще образуется чрезмерное скопление тромбоцитов, приводящее к закупорке сосудов, которая приводит к артериальному и венозному тромбозу и может быть опасна для жизни (например, тромбоэмболические окклюзии артерий конечностей, инсульт, острый инфаркт миокарда). Применение гепарина должно быть прекращено у любого пациента, у которого появляется тромбоцитопения, или кое-колько количество тромбоцитов уменьшается более чем на 50%. Прекращение использования гепарина является обязательным. Для выявления антител к гепарину, связанных с тромбоцитарным фактором 4, проводятся тесты. Антикоаагуляция негепариновых антикоагулянтов (например, аргатробан, бивалирудин, фондапаринсу) не требуется по крайней мере до восстановления тромбоцитов. Низкомолекулярный гепарин (НМГ) является менее иммуногенным, чем нефракционированный гепарин. НМГ не может быть использован для предотвращения свертывания у пациентов с ГИТП, потому что большинство ГИТ антител перекрестно реагируют с НМГ.

Инфекции. ВИЧ-инфекция может вызывать иммунологическую тромбоцитопению, неотличимую от ИТП, за исключением связи с ВИЧ. Количество тромбоцитов может увеличиваться при употреблении глюкокортикоидов. Однако глюкокортикоиды часто откладывают (если количество тромбоцитов падает до <20 000/мкл), т.к. ВИЧ может быть использован для предотвращения свертывания у пациентов с гепатитом, потому что большинство ГИТ антител перекрестно реагируют с НМГ.

Вирус гепатита С обычно связан с тромбоцитопенией. Активная инфекция может привести к снижению иммунной функции. После лечения противовирусными препаратами количество тромбоцитов также увеличивается.

Вирус гепатита С обычно связан с тромбоцитопенией. Активная инфекция может сопровождать тромбоцитопению, которая не отличается от ИТП, когда тромбоциты от 40 000 до 70 000/мкл может быть связана с повреждением печени, которое снижает количество тромбоцитов; с гемолитическим синдромом роста, регулирующего рост мегакариоцитов и производство тромбоцитов. Гепатит-индукционная тромбоцитопения восприимчив к тому же лечению, что и ИТП.
Другие инфекции, такие как системные вирусные инфекции (например, вирус Эпштейна – Барр, цитомегаловирус), риккетсиозные инфекции (например, пятнистая лихорадка Скалистых гор) и бактериальный сепсис, как правило, связаны с тромбоцитопенией.

Беременность. Мягкая степень тромбоцитопении, протекающая бессимптомно и возникающая в конце беременности с 5% вероятностью (гестационная тромбоцитопения). Она, как правило, несильно (уровень тромбоцитов меньше 70 000/мкл наблюдается редко), не требует лечения и проходит после родов. Тем не менее тяжелая тромбоцитопения может развиться у беременных с преэклампсией и ХЕЛП синдромом (гемолиз, повышенные показатели тестов функции печени, и низкие тромбоциты); таким женщинам обычно необходимы немедленные роды. Переливание тромбоцитов в этой ситуации назначается при количестве тромбоцитов <20 000 /мкл (или <50 000/мкл при кесаревом сечении).

Сепсис. Сепсис часто вызывает неиммунологическую тромбоцитопению, которая соотносится с тяжестью инфекции. Тромбоцитопения имеет несколько причин: ДВС, образование иммунных комплексов, которые можно связать с тромбоцитами, активация комплемента, отложение тромбоцитов на поврежденной эндотелиальной поверхности и апоптоз тромбоцитов.

ТРОМБОТИЧЕСКАЯ ТРОМБОЦИТОПЕНИЧЕСКАЯ ПУРПУРА И ГЕМОЛИТИКО-УРЕМИЧЕСКИЙ СИНДРОМ

Тромботическая пурпура (ТТП) и гемолитико-уремический синдром (ГУС) являются острыми, скоротечными заболеваниями, для которых характерна микроангиопатическая тромбоцитопения и гемолитическая анемия. Другие проявления могут включать в себя изменение сознания и почечную недостаточность. Для диагностики необходимо проведение лабораторных тестов, демонстрирующих характерные нарушения, в т.ч. Куимбс-отрицательную гемолитическую анемию. Лечение включает плазмафез и кортикостероиды у взрослых и поддерживающую терапию (иногда включая гемодиализ) у детей.

Патофизиология

ТТП и ГУС включают неиммунологическое разрушение тромбоцитов. Оголенные тромбоциты и фибрин накапливаются в нескольких мелких сосудах и повреждают проходящие тромбоциты и эритроциты, вызывая значительную (механическую) тромбоцитопению и анемию. Тромбоциты также потребляются внутри нескольких небольших тромбов. В некоторых органах развиваются умеренные тромбы с участием фактора Виллебранда (ФВ) (без стенки сосуда с гранулцитарной инфилтрацией по типу васкулита), образующиеся в первую очередь в артериокапиллярных переходах, описанные как тромботическая микроангиопатия. Вероятнее всего, будут затронуты мозг, сердце и особенно почки.

ТТП и ГУС отличаются главным образом относительной степенью почечной недостаточности. Как правило, заболевания у взрослых относят к ТТП и они редко связаны с почечной недостаточностью. ГУС используется для описания расстройства у детей, которое обычно включает почечную недостаточность.

Этиология

Дети. В большинстве случаев возникает острый геморрагический колит в результате действия Шига-токсинов бактерий (например, кишечная палочка O157: H7, некоторые штаммы дизентерии Шигелла).

Взрослые. Много случаев неясного происхождения. Известные причины включают:
- препарата – хинин (наиболее распространенный), иммунодепрессанты и препараты химиотерапии рака (например, циклоспорин, митомицин С);
- беременность (часто неотличима от тяжелой преэклампсии или эклампсии);

Предрасполагающим фактором для многих пациентов является врожденный или приобретенный дефицит фермента плазмы ADAMTS13, который расщепляет ФВ, таким образом устраняя аномально большие мультимеры ФВ, которые могут вызвать тромбоцитарные сгустки.
Глава 143. Тромбоцитопения и тромбоцитарная дисфункция

Симптомы и признаки
Проявления ишемии развиваются с различной степенью тяжести в нескольких органах. Эти проявления включают слабость, спутанность со-знания или кому, боль в животе, тошноту, рвоту, диарею и аритмию, вызванную повреждением миокарда. У детей, как правило, возникает рвота, боли в животе, понос (часто кровавый). Может подняться небольшая температура. Высокая температура с ознобом не возникает при ТТП или ГУС и указывает на сепсис. Симптомы и признаки ТТП и ГУС неразличимы, кроме того, что неврологические симптомы при ГУС встречаются реже.

Диагностика
- Общий анализ крови с тромбоцитами, мазок периферической крови, тест Кумбса.
- Исключение других тромбоцитопенических заболеваний.

ТТП и ГУС подозревают у пациентов с характерными симптомами, тромбоцитопенией и анемией. При подозрении ТТП и ГУС больному необходимо назначить ряд исследований, таких как анализ мочи, мазок периферической крови, количество ретикулоцитов, сыворотку ЛДГ, оценка функции почек, сывороточный билирубин (прямой и непрямой) и тест Кумбса. На наличие диагноза указывают следующие показатели:
 - тромбоцитопения и анемия;
 - фрагментированные эритроциты в мазке периферической крови свидетельствуют о микроангиопатическом гемолизе (шизоциты: шлемовидные эритроциты, треугольные эритроциты, деформированные эритроциты);
 - наличие гемолиза (падение уровня гемоглобина, полицитемия, повышенное количество ретикулоцитов, повышенный уровень ЛДГ и билирубина);
 - отрицательный прямой антиглобулиновый (Кумбса) тест.

Лечение
- Плазмаферез и кортикостероиды для взрослых.

Типичный связанный с диареей ГУС у детей, вызванный энтерогеморрагической инфекцией, обычно проходит спонтанно и лечится при помощи поддерживающей терапии, а не плазмафереза; более чем половине пациентов необходим гемодиализ. В других случаях, неизлечимые ТТП–ГУС почти всегда заканчиваются смертельным исходом. С помощью плазмафереза, однако, более 85% больных выздоравливают полностью.

Плазмаферез проводят ежедневно, пока не исчезнут признаки заболевания (индикатором является нормальное количество тромбоцитов, которое может сохраняться от нескольких дней до нескольких недель). Взрослым с ТТП также назначают кортикостероиды. Для больных с рецидивами могут быть эффективны более интенсивные иммуносупрессии с ритуксимабом. Большинство пациентов испытывают только один эпизод ТТП–ГУС. Тем не менее рецидивы встречаются приблизительно у 40% пациентов, у которых наблюдается серьезный дефицит активности ADAMTS13, вызванный ингибитором.
аутоантител. Пациентов нужно быстро обсле-
dовать, если симптомы указывают на развитие рецидива.

Ключевые моменты
■ Тромбоциты и эритроциты разрушаются не-
imмунологически, что приводит к тромбоци-
tопении и анемии; у детей часто встречается почечная недостаточность.
■ У детей, как правило, причиной заболевания является геморрагический колит, возникший из-за
 Shigatoxinsпроизводящей бактерии.
■ У взрослых причина обычно связана с ан-
tителами против ADAMTS13 протеазы, но может быть также связана с определенными препаратами, беременностью и инфекцион-
ными колитами.
■ Типичный связанный с диареей ГУС у
 детей обычно спонтанно проходит с поддерживающей терапией, хотя более половины заболевших детей требует
 гемодиализ.
■ Взрослым необходимы плазмаферез и на-
 значение кортикостероидов.

Гемостаз

Гемостаз представляет собой процесс оста-
nовки кровотечения из поврежденной сосуди-
стой стенки и требует взаимодействия сосудов,
тромбоцитов и плазменных факторов. Регуля-
торные механизмы уравновешивают процесс
формирования тромбов. Нарушения системы
гемостаза могут привести к повышенной крово-
точивости или тромбозам.

Сосудистые факторы
Сосудистые факторы снижают потери крови
при травме через вазоконстрикцию местных со-
судов (немедленная реакция на травму) и сжа-
tие поврежденных кровеносных сосудов путем
экстравазации крови в окружающие ткани. При
pовреждении сосудистой стенки происходят
адгезия и агрегация тромбоцитов, образование
фибрина. Взаимодействие тромбоцитов с фи-
брином формирует тромб.

Тромбоцитарные факторы
При помощи различных механизмов, к
которым относятся высвобождаемые эндоте-
лиальными клетками простациклин и окись
aзота, сохраняется ток крови, предотвращается
образование тромбоцитарного стаза, расши-
ряются интактные кровеносные сосуды. Про-
изводство этих медиаторов прекращается при
pовреждении эндотелия сосудистой стенки. В
этих условиях происходят адгезия тромбоци-
tов к поврежденной интиме сосудистой стенки
и формирование тромбоцитарных агрегатов.
Начальная адгезия тромбоцитов происходит
k фактору Виллебранда (ФБ), секретируемо-
mu эндотелиальными клетками в перivasку-
лярный матрикс. ФВ взаимодействует с ре-
цепторами на поверхности тромбоцитарной
мембраны (гликопrotein 1b/IX). Тромбоциты,
прикрепленные к сосудистой стенке, актива-
рируются и высвобождают медиаторы из гранул
хранения, включая аденозиндифосфат (АДФ).
Другие биохимические изменения, проис-
ходящие в результате активации, включают
gидролиз мембранных фосфолипидов, ингиби-
рование аденозиндифосфатазы, мобилизацию вну-
триклеточного кальция и фосфорилирование
внутриклеточных протеинов. Арахидоновая
кислота преобразуется в тромбоксан A
2; эта
реакция требует участия циклооксигеназы и
необратимо ингибируется аспирином и обра-
тимо многими нестероидными противовоспа-
лительными препаратами. АДФ, тромбоксан A
2 и другие медиаторы провоцируют агрегацию
дополнительных тромбоцитов к поврежден-
nому эндотелию и активируют их. Еще один
рецептор образуется на мембране тромбоци-
tов из гликопротеинов IIb и IIIa. Фибриноген
связывается с гликопротеиновым комплексом
IIb/IIIa расположенных рядом тромбоцитов и
соединяет их друг с другом.
Сборка и активация коауляционных комплексов и образование тромбина проходят на поверхности тромбоцитов. Тромбин превращает фибриноген в фибрин. Нити фибрина соединяют агрегированные тромбоциты для сохранения тромбоцитарно-фибриновой гемостатической пробки.

Факторы плазмы

Плазменные факторы свертывания крови воздействуют друг на друга с целью производства тромбина, который превращает фибриноген в фибрин. Связывая и распространяясь от гемостатической пробки, фибрин укрепляет тромб.

При внутреннем пути свертывания фактор XII, высокомолекулярный кининоген, прекаликреин и активированный фактор XI (фактор XIа) взаимодействуют для производства активированного фактора IXа из фактора IX. Фактор IXа затем взаимодействует с фактором VIIIа и прокоагулянтными фосфолипидами (присутствуют на поверхности активированных тромбоцитов и клеток тканей) для создания комплекса, активирующего X. При внешнем пути фактор VIIа и тканевой фактор напрямую активируют фактор X (комплекс фактор VIIа/тканевой фактор также активирует фактор IX, рис. 144–1 и табл. 144–1).

Активация внутреннего или внешнего пути стимулирует общий путь свертывания, что приводит к образованию фибринового сгустка. Общий путь активации состоит из трех шагов:

1. Активатор протромбина вырабатывается на поверхности активированных тромбоцитов и тканевых клеток. Активатор представляет собой комплекс из фермента, фактора Xа и 2 кофакторов (фактор Va и прокоагулянтный фосфолипид).
2. Активатор протромбина расщепляет протромбин на тромбин и другие частицы.
3. Тромбин стимулирует создание полимеров фибрина из фибриногена. Тромбин также активирует фактор XIII, фермент, катализирующий образование более сильных связей между соседними мономерами фибрина, так же как и фактор VIII и фактор XI.

Ионы Са$^{2+}$ необходимы в большинстве реакций образования тромбина (Са$^{2+}$-хелатирую-

Рис. 144–1. Каскад свертывания крови
<table>
<thead>
<tr>
<th>Номер фактора или его название</th>
<th>Синонимичное название</th>
<th>Причина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Плазменные факторы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Фибриноген</td>
<td>Предшественник фибрина</td>
</tr>
<tr>
<td>II</td>
<td>Протромбин</td>
<td>Предшественник тромбина, который преобразует фибриноген в фибрин, тромбин активирует факторы V, VIII, XI, XIII; тромбин в соединении с тромбомодулином активирует протеин С. Витамин К-зависимый фактор.</td>
</tr>
<tr>
<td>V</td>
<td>Преакцелерин</td>
<td>Активируется до фактора Va, который служит кофактором для фермент- ного фактора Xa в комплексе фактора Xa/Va/фосфолипиды, который расщепляет протромбин, образуя тромбин. Присутствует в α-гранулах тромбоцитов. Фактор Va инактивируется активированным протеином C в комплексе с протеином S.</td>
</tr>
<tr>
<td>VII</td>
<td>Проконвертин</td>
<td>Связываясь с тканевым фактором, активируется и формирует ферментный компонент в комплексе фактора VIIa/тканевого фактора, который активирует факторы IX и X. Витамин К-зависимый фактор.</td>
</tr>
<tr>
<td>VIII</td>
<td>Антигемофильный глобулин</td>
<td>Активируется до фактора VIIa, служащего кофактором ферментного фак- тора Xa в комплексе фактора Xa/VIIa/фосфолипиды, который активирует фактор X. Участвует в тромбоцитах. Присутствует в α-гранулах тромбоцитов. Фактор VIIa инактивируется с помощью активированного протеина С в комплексе с протеином S (как и фактор V).</td>
</tr>
<tr>
<td>IX</td>
<td>Фактор Кристмаса</td>
<td>Активированный до фактора Xa, функционирует как ферментный комплекс фактора Xa/VIIa/фосфолипиды, который активирует фактор X. Витамин К-зависимый фактор.</td>
</tr>
<tr>
<td>X</td>
<td>Фактор Стоуарта–Прауэра</td>
<td>Активируется до фактора Xa, который функционирует как ферментный комплекс фактора Xa/фосфолипиды, который расщепляет протромбин, образуя тромбин. Витамин К-зависимый фактор.</td>
</tr>
<tr>
<td>XI</td>
<td>Плазменный активатор тромбопластина</td>
<td>Активируется до фактора XIa, который активирует фактор IX в реакции, требующей ионов Ca²⁺.</td>
</tr>
<tr>
<td>Прекалликреин</td>
<td>Фактор Флетчера</td>
<td>Участвует в рецепторной реакции, в которой активируется до калликреи- на фактором XIIa. Как и калликреин, катализирует дальнейшую активацию фактора XII в фактор XIIa. Циркулирует в виде молекулярного комплекса с высокомолекулярным кининогеном.</td>
</tr>
<tr>
<td>Высокомолекулярный кининоген</td>
<td>Фактор Фитцдже-ральда</td>
<td>Циркулирует как биомолекулярный комплекс с высокомолекулярным кининогеном.</td>
</tr>
<tr>
<td>XII</td>
<td>Фактор Хагемана</td>
<td>При активации до фактора XIIa контактом с поверхностью, калликреином или другими факторами активирует прекалликреин и фактор XI, запуская в искусственных условиях путь свертывания.</td>
</tr>
<tr>
<td>XIII</td>
<td>Фибринстабилизирую- щий фактор</td>
<td>При активации тромбом катализирует создание пептидных связей между молекулами фибрина, что помогает стабилизировать тромб.</td>
</tr>
<tr>
<td>Протеин С</td>
<td>—</td>
<td>При активации комплексом тромбин – тромбомодулин ингибирует (при наличии свободного протеина S и фосфолипидов) с помощью протеолиза кофакторную активность факторов VIIa и Va. Витамин К-зависимый фактор.</td>
</tr>
<tr>
<td>Протеин S</td>
<td>—</td>
<td>Циркулирует в плазме как свободный протеин S и как комплекс протеин S/C4b-связывающий протеин дополняющей системы. Свободный протеин S исполняет функции активированного протеина С функции кофактора для Витамин К-зависимый фактор.</td>
</tr>
</tbody>
</table>
Глава 144. Гемостаз

Щие агенты, например, цитрат, этилендиаминтетрауксусная кислота, используются в пробирке в качестве антикоагулянтов). Витамин К-зависимые факторы свертывания крови (факторы II, VII, IX и X) не могут нормально связываться с фосфолипидами через Ca$^{2+}$-мости и участвовать в свертывании крови, когда факторы синтезируются в отсутствие витамина К.

Хотя пути свертывания крови достаточно полезны для понимания механизмов и лабораторной оценки коагуляционных нарушений, в естественных условиях коагуляция преимущественно проходит внешним путем. У людей с наследственным дефицитом фактора XII, высокомолекулярным кининогеном или прекалликреином отсутствуют нарушения кровотечения. У людей с наследственным дефицитом фактора XI наблюдается легкое или умеренное нарушение свертываемости крови.

Регуляторные механизмы

Ряд ингибиторных механизмов предотвращает неконтролируемую активацию реакций коагуляции, которая может привести к локальному тромбозу или диссеминированному внутрисосудистому свертыванию. Эти механизмы включают:

- инактивацию прокоагулянтовых ферментов;
- фибринолиз;
- печеночный клиренс активированных факторов свертывания.

Инактивация факторов свертывания. Ингибиторы плазменных протеаз (антитромбин,
ингибитор тканевого фактора, α2-макроглобулин гепаринового кофактор II) инактивируют коагуляционные ферменты. Антитромбин ингибирует тромбин, фактор Ха, фактор ХІа и фактор IXа. Гепарин усиливает активность антитромбина.

Два витамина К-зависимых протеина, белок С и свободный протеин S образуют комплекс, который путем протеолиза инактивирует факторы VIIIа и Va. Тромбин, соединяясь с рецептором на эндотелиальных клетках (тромбомодулин) активирует протеин С. Активированный белок С совместно со свободным протеином S и фосфолипидами как кофакторами протеолизует и инактивирует факторы VIIIа и Va.

Фибринолиз. Отложение фибрина и фибринолиз должны быть сбалансированы для поддержания и ограничения гемостатического сгустка при восстановлении поврежденной сосудистой стенки. Фибринолитическая система растворяет фибрин при помощи плазмина, являющегося протеолитическим ферментом. Фибринолиз активируется посредством активаторов плазминогена, продуцируемых эндотелиальными клетками сосудов. Активаторы плазминогена и плазминоген (из плазмы) присоединяются к фибрину, далее активаторы плазминогена расщепляют плазминоген, образуя плазмин (рис. 144–2). Затем плазмин образует растворимые продукты распада фибрина, которые поступают в циркуляцию.

Существует несколько активаторов плазминогена:
• Тканевой активатор плазминогена (ТАП), производное эндотелиальных клеток, имеет низкую активность, когда находится в свободной форме в растворе, но его эффективность возрастает при взаимодействии с фибрином в непосредственной близости от плазминогена.
• Урокиназа существует в одноцепочной и двухцепочной формах с различными функциональными возможностями. Одноцепочечная урокиназа не способна активировать свободный плазминоген, но, как и ТАП, способна активировать плазминоген при взаимодействии с фибрином. Микроконцентрация плазмина расщепляют одноцепочечную в двух-цепочечную урокиназу, которая активирует плазминоген в растворе, так же как плазминоген, связанный с фибрином. Эпителиальные клетки в экскреторных протоках (например, почечные канальцы, прото-

Рис. 144–2. Фибринолитический путь. Накопление фибрина и фибринолиз должны быть сбалансированы в процессе восстановления поврежденной сосудистой стенки. Поврежденные сосудистые эндотелиальные клетки производят активаторы плазминогена (тканевой активатор плазминогена, урокиназа), активирующие фибринолиз. Активаторы плазминогена расщепляют плазминоген, образуя плазмин, который растворяет сгустки. Процесс фибринолиза контролируется ингибиторами активаторов плазминогена (PAIs:PAI-1) и ингибиторами плазмина (например, α2-антиплазмин)
ки молочной железы) секретируют урокиназу, которая в этих каналах является физиологическим активатором фибринолиза.

* Стрептокиназа, представляющая бактериальный продукт, не присутствующий в организме человека, является другим потенциальным активатором плазминогена.

Стрептокиназа, урокиназа и рекомбинантный ТАП (альтеплаза) используются в терапевтической практике с целью индукции фибринолиза у больных с острыми тромботическими заболеваниями.

Регулирование фибринолиза. Фибринолиз регулируется ингибиторами активатора плазминогена (ИАП) и ингибиторами плазмина, которые замедляют фибринолиз. ИАП-1, являясь наиболее важным ИАП, высвобождается из эндотелиальных клеток сосудов, инактивирует ТАП, урокиназу и активирует тромбоциты. Основным ингибитором плазмина является α₂-антиплазмин, который инактивирует свободный плазмин, высвобождаемый из сгустка. Часть α₂-антиплазмина может связываться с фибриновым сгустком с помощью фактора XIII, что предотвращает излишнюю плазминовую активность в пределах сгустка.

Урокиназа и ТАП быстро выводятся печенью, что является другим механизмом предупреждения чрезмерного фибринолиза.

ЧРЕЗМЕРНОЕ КРОВОТОЧЕНИЕ

На необычное или чрезмерное кровотечение может указывать несколько различных признаков и симптомов. У больных могут возникать необычные носовые кровотечения, чрезмерные или длительные менструальные выделения (мениоррагия) или длительные кровотечения после небольших порезов, чистки зубов щеткой или зубной нитью или травмы. У других больных могут наблюдаться необычные поражения кожи, включая петехии (мелкие сосуды). У некоторых тяжелых больных кровь может внезапно начать течь из сосудистых проколов или повреждений кожи, перерастая в тяжелое кровотечение из этих мест или кровотечение желудочно-кишечного или мочеполового трактов. У некоторых больных первым признаком являются результаты лабораторного исследования нарушений, указывающие на восприимчивость к чрезмерному кровотечению, которое было обнаружено случайно.

Этиология

Чрезмерное кровотечение может возникать вследствие различных механизмов (табл. 144–2), включающих следующее:

- тромбоцитарные нарушения;
- коагуляционные нарушения;
- дефекты кровеносных сосудов.

Тромбоцитарные нарушения могут включать в себя ненормальное количество тромбоцитов (как правило, слишком маленькое количество тромбоцитов, хотя и слишком повышенное их количество, может быть связано либо с тромбозами, либо с чрезмерным кровотечением), нарушение тромбоцитарной функции или сочетание обоих факторов. Коагуляционные нарушения крови могут быть приобретенными и наследственными.

Итак, самыми распространенными причинами чрезмерного кровотечения являются:

- тяжелая форма тромбоцитопении;
- чрезмерная антикоагуляция с использованием варфарина или гепаринов;
- заболевания печени (недостаточное производство факторов свертывания крови).

Оценка

Анамнез. В анамнезе протекающего заболевания должны быть определены места кровотечения, количество и продолжительность кровотечений и соотношение кровотечения с возможными провоцирующими факторами.

При исследовании систем организма нужно дополнительно узнать о неявных кровотечениях, которые не были приняты во внимание (например, у больных с жалобами на легкие синяки нужно спросить про частые носовые кровотечения, кровоточивость десен при чистке зубов, ме-
Таблица 144-2. НАКОТНЫЕ ПРИЧИНЫ ЧРЕЗМЕРНОГО КРОВОТЕЧЕНИЯ

<table>
<thead>
<tr>
<th>Категория</th>
<th>Примеры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тромбоцитарные нарушения</td>
<td>Недостаточное производство (например, при лейкемии, апластической анемии и некоторых миелодиспластических синдромах) Секвестрация тромбоцитов в селезенке (например, цирроз с застойной спленомегалией) Увеличение потребления или разрушения тромбоцитов (например, при идиопатической тромбоцитопении, ДВС-синдроме, тромбоцитопении, гемолитико-уремическом синдроме, сепсисе и ВИЧ-инфекции) Разрушение, вызванное лекарственными препаратами (например, гепарином, хинидином, хинином, сульфаниламидом, препаратами сульфонилмочевины, рифампикином или золото-хлористоводородным натрием)</td>
</tr>
<tr>
<td>Повышенное количество тромбоцитов (количественное нарушение)</td>
<td>Эссенциальная тромбоцитемия (тромбозы могут быть более распространенны чем кровотечения)</td>
</tr>
<tr>
<td>Недостаточная тромбоцитарная функция (качественное нарушение)</td>
<td>Болезнь Виллеbrandа (недостаточная ФВ-опосредованная адгезия тромбоцитов) Нарушения, вызванные применением препаратов (например, аспирина или других нестероидных противовоспалительных препаратов) Системные нарушения (уремия, а иногда миелопролиферативный или миелодиспластический синдромы, множественная миелома)</td>
</tr>
</tbody>
</table>

Нарушения коагуляции

| Приобретенные | Недостаток витамина K Болезни печени Антикоагуляция с варфарином или гепарином ДВС-синдром |
| Наследственные | Гемофилия A (недостаток фактора VIII) Гемофилия B (недостаток фактора IX) |

Сосудистые нарушения

| Приобретенные | Недостаток витамина С Пурпура Шенлейна–Геноха |
| Наследственные | Заболевания соединительной ткани (например, синдром Элерса–Данлоса, несовершенный остеогенез, синдром Марфана) Наследственная геморрагическая телеангиэктазия |

ДВС – диссеминированное внутрисосудистое свертывание; ФВ – фактор Виллеbrandа.

лену/кишечное кровотечение, кровохарканье, кровь в стуле или моче). У больных также нужно узнать про симптомы возможных причин, в т.ч. о болях в животе, диарее (болезни желудочно-кишечного тракта), боли в суставах (заболевания соединительной ткани), аменорее и утренней тошноте (беременность). В истории перенесенных заболеваний должны быть выявлены системные условия, связанные с дефектами тромбоцитов или коагуляции, в частности:

- тяжелые инфекции, рак, цирроз печени, ВИЧ-инфекция, беременность, системная красная волчанка (СКВ) или уремия;
- предшествующее чрезмерное кровотечение/необычное кровотечение/использование переливания крови;
- случаи чрезмерного кровотечения в семье.

Следует обратить внимание на лекарственный анамнез, особенно на использование гепарина, варфарина, аспирина и нестероидных противовоспалительных препаратов. Еще нужно узнать о потреблении лекарств и пищевых продуктов (в т.ч. травяных добавок), которые замедляют метаболизм варфарина и таким образом увеличивают его антикоагуляционный эффект).

Медицинский осмотр. Показатели жизненно важных функций и общий внешний вид могут указывать на гиповолемию (тахикардия, гипотония, бледность, потоотделение) или инфекцию (лихорадка, тахикардия, гипотония с воспалительными заболеваниями/сепсисом).

Кожу и слизистую оболочку (нос, рот, влагалище) проверяют на наличие петехий, пурпуры и телеангиэктазий. Желудочно-кишечное кровотечение часто может быть выявлено путем
Глава 144. Гемостаз

проведения пальцевого ректального исследования. Признаки кровотечения в глубоких тканях включают в себя болезненность во время движения и локальные отеки, мышечные гематомы и, в случае внутричерепного кровотечения, спутанность сознания, ригидность затылочных мышц, фокальные неврологические нарушения или комбинацию этих факторов.

Характерными признаками злоупотребления алкоголем или заболеваний печени являются асцит, спленомегалия (вторична по отношению к портальной гипертензии) и желтуха.

Тревожные признаки. Особую настороженность должны вызвать следующие факторы:
• признаки гиповолемии или геморрагического шока;
• беременность или недавние роды;
• признаки инфекций или сепсиса.

Интерпретация результатов. Кровотечение у пациентов, принимающих варфарин, особенно вероятно при увеличении дозы или добавлении других препаратов или продуктов питания, которые мешают инактивации варфарина. Телеангиэктазии на лице, губах, во рту или на слизистой оболочке носа, на кончиках пальцев рук и ног у больного с зарегистрированными случаями чрезмерного кровотечения в семье скорее всего являются признаками наследственной геморрагической телеангиэктазии.

Поверхностные кровотечения, в т.ч. кожи и слизистых оболочек, указывают на количественный или качественный дефект тромбоцитов или дефекты кровеносных сосудов (например, амилоидоз).

Кровотечение в глубоких тканях (например, гемартрозы, мышечные гематомы забрюшинного кровоизлияния) предполагает нарушение коагуляции (коагулопатия).

Случаи чрезмерного кровотечения в семье указывают на наследственную коагулопатию (например, гемофилию), качественное тромбоцитарное расстройство, являющееся типом болезни Виллебранда (БВ), или на наследственную геморрагическую телеангиэктазию. Отсутствие таких случаев не исключает, однако, наследственных нарушений гемостаза.

Кровотечение у беременных или недавно родивших, которые находятся в состоянии шока, или имеющих серьезные инфекции является признаком диссеминированного внутрисосудистого свертывания (ДВС-синдром).

Кровавый понос и тромбоцитопения у ребенка с температурой и желудочно-кишечными симптомами указывают на гемолитико-уремический синдром (ГУС), который часто ассоциируется с кишечной палочкой O157:H7.

Пальпируемая пурпурная сыпь на разгибательных поверхностях конечностей у детей указывает на пурпуру Шенлейна–Геноха, особенно если она сопровождается лихорадкой, полиартритом или желудочно-кишечными симптомами.

У пациентов, злоупотребляющих алкоголем или с болезнью печени, могут быть проявления коагулопатии, спленомегалии, тромбоцитопении.

Больным с наркоманией IV стадии необходимо проводить исследование на ВИЧ-инфекцию.

Тесты. Большинству пациентов требуется проведение лабораторных исследований. Основополагающие исследования:
• общий анализ крови с количеством тромбоцитов;
• мазок периферической крови;
• протромбиновое время и АЧТВ.

Скрининг-тесты оценивают компоненты гемостаза, в т.ч. количество циркулирующих тромбоцитов и пути плазменной коагуляции. Наиболее распространенными скрининг-тестами на нарушения свертываемости являются анализы на определение количества тромбоцитов, ПВ и АЧТВ. Если результаты находятся за пределами нормы, то проведение специальных тестов поможет определить дефект. Уровень продуктов распада фибрина определяется в естественных условиях активации фибринолиза.

Протромбиновое время (ПВ) необходимо для выявления нарушений во внешнем и общем путях свертывания (плазменные факторы VII, X, V, протромбин и фибриноген). ПВ рассчитывается как международное нормализованное отношение (МНО), которое отражает соотношение ПВ пациента с контрольным значением лаборатории; МНО позволяет учитывать различия в реагентах между различными лабораториями. Так как реагенты и приборы отличаются друг от друга, каждая лаборатория определяет свои
<table>
<thead>
<tr>
<th>Тест</th>
<th>Причина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Образование тромба</td>
<td></td>
</tr>
<tr>
<td>Количество тромбоцитов</td>
<td>Количественная оценка тромбоцитов</td>
</tr>
<tr>
<td>Агрегация тромбоцитов</td>
<td>Оценивает соответствие восприимчивости тромбоцитов к физиологическим стимулам, активирующим тромбоциты (например, коллаген, АДФ, арахидоновая кислота) Выявляет нарушения при наследственных или приобретенных функциональных расстройствах тромбоцитов</td>
</tr>
<tr>
<td>Антиген фактора Виллебранда</td>
<td>Измеряет общую концентрацию белков плазмы ФВ</td>
</tr>
<tr>
<td>Состав мультимера фактора Виллебранда</td>
<td>Оценивает доставку мультимеров ФВ в плазму (например, большие мультимеры отсутствуют во 2 типе болезни Виллебранда)</td>
</tr>
<tr>
<td>Агглютинация ристоцетина</td>
<td>Показывает крупные мультимеры ФВ в плазме (часто делается как часть повседневной лабораторной оценки БВ</td>
</tr>
<tr>
<td>Кофактор активности ристоцетина</td>
<td>Количественная оценка больших мультимеров ФВ в плазме</td>
</tr>
<tr>
<td>Образование фибрина</td>
<td></td>
</tr>
<tr>
<td>ПВ</td>
<td>Показывает факторы внешнего и общего путей (факторы VII, X и V; протромбин и фибриноген)</td>
</tr>
<tr>
<td>АЧТВ</td>
<td>Показывает факторы внутреннего и общего путей (предкалликреин, высокомолекулярный кининоген; факторов XII, XI, IX, VIII, X, и V; протромбин и фибриноген)</td>
</tr>
<tr>
<td>Специальные функциональные анализы факторов свертывания</td>
<td>Определяют активность специальных факторов свертывания, определяемую как процент от нормы</td>
</tr>
<tr>
<td>Тромбиновое время</td>
<td>Оценивает последний этап коагуляции (тромбиновое расщепление фибриногена с образованием фибрина) Увеличено вследствие активации антитромбина гепарином и в условиях, приводящих к качественным аномалиям фибриногена или гипофибриногенемии</td>
</tr>
<tr>
<td>Рептилазное время</td>
<td>Если этот показатель в норме, а тромбиновое время увеличено, то это доказывает, что предполагаемый образец плазмы содержит гепарин (например, остаточный гепарин после экстракорпорального шунтирования или в образце, взятом из капельницы с гепариновой промывкой), поскольку рептилазное время зависит от гепариновой активации антитромбина</td>
</tr>
<tr>
<td>Уровень фибриногена</td>
<td>Количественная оценка фибриногена в плазме, которая увеличивается при острой фазе реакций при тяжелых заболеваниях печени и тяжелом ДВС</td>
</tr>
<tr>
<td>Фибринолиз</td>
<td></td>
</tr>
<tr>
<td>Стабильность свертывания в течение 24-часовой инкубации в физрастворе или 5М мочевине</td>
<td>Вызывает лизис тромбов в физрастворе при чрезмерной фибринолитической активности или в 5М мочевине, если фактор XIII является недостаточным Проводится больным с плохим заживлением ран или в случае частых выкидышей</td>
</tr>
<tr>
<td>Активность плазминогена</td>
<td>Количественная оценка плазминогена в плазме, которая уменьшается у больных с врожденным ранним развитием венозной тромбоземболии (редко)</td>
</tr>
<tr>
<td>α₂-антиплазмин</td>
<td>Количественная оценка уровня плазмы этого ингибитора фибринолиза, которая уменьшается у больных с чрезмерным кровотечением вследствие повышенного фибринолиза (редко)</td>
</tr>
<tr>
<td>Сыворотка фибриногена и продукты распада фибрина</td>
<td>Скрининг для ДВС Повышенный уровень при воздействии плазмина на фибриноген или фибрина в естественных условиях (например, при ДВС) Заменен анализом D-димера</td>
</tr>
<tr>
<td>D-димер плазмы</td>
<td>Измеряется при помощи теста латексной агглютинации моноклональных антител или с помощью ИФА Высокий показатель показывает, что тромбин был создан в естественных условиях с вытекающим отложением фибрина, активацией сшиваемого фермента фактора XIII и вторичным фибринолизом Имеет практическое преимущество в том, что анализ может быть проведен из плазмы, обработанной цитратом, и, таким образом, в отличие от теста на продукты распада фибрина в сыворотке, не требует для приготовления сыворотки, свободной от остаточного фибриногена, свертывания крови в специальной трубке Используется при диагностике тромбозов в естественных условиях (например, тромбоз глубоких вен, легочная эмболия), особенно чувствительная ИФА версия</td>
</tr>
</tbody>
</table>

АДФ – аденозиндифосфат; ДВС – диссеминированное внутрисосудистое свертывание; ИФА – иммуноферментный анализ; БВ – болезнь Виллебрандта; ФВ – фактор Виллебранда.
границы нормальных значений для ПВ и АЧТВ; стандартные границы нормы для ПВ составляют от 10 до 13 секунд. Если МНО на >1,5 секунды и плазма на 3 секунды больше контрольных значений лаборатории, то это является признаком нарушений и требует проведение дальнейшей оценки. МНО является полезным инструментом для скрининга нарушений коагуляции при различных приобретенных условиях (например, дефицит витамина K, заболевания печени, ДВС-синдром). Он также используется для мониторинга терапии с пероральным антигепарином.

Частичное тромбопластиновое время (АЧТВ) исследует плазму на отклонение в факторах внутреннего и общего пути (прекалликреин, высокомолекулярный кининоген; факторы XII, XI, IX, VIII, X, и V; протромбин; фибриноген). АЧТВ тесты определяют недостаточность всех факторов свертывания крови, за исключением фактора VII (измеряется ПВ) и фактора XIII. Стандартные границы нормы составляют от 28 до 34 секунд. Результат в пределах нормы показывает, что по крайней мере 30% всех факторов свертывания в пути присутствуют в плазме. Гепарин увеличивает АЧТВ. Поэтому АЧТВ всегда используют для мониторинга терапии с гепарином. Ингибиторы, которые увеличивают АЧТВ, включают аутоантитела к фактору VIII и антитела против протеиново-фосфолипидных комплексов (волнаночный антикоагулянт).

Увеличение ПВ и АЧТВ может быть реакцией на:
- недостаток фактора;
- присутствие ингибитора компонента пути свертывания крови.

ПВ и АЧТВ не увеличиваются пока нет 70% нехватки одного или более факторов свертывания крови. Для определения того, отражает ли увеличение дефицит одного или нескольких факторов свертывания или присутствие ингибитора, испытание повторяют после смешивания плазмы больного с нормальной плазмой в соотношении 1:1. Поскольку эта смесь содержит около 50% от нормального уровня всех факторов свертывания крови, то неудивляйтесь попытка смеси почти полностью скорректировать увеличение указывает на присутствие ингибитора в плазме.

Ранее использовавшиеся тесты являются довольно сомнительными. Нормальные результаты исследования на начальном этапе могут исключить множество нарушений свертываемости. Исключения составляют болезнь Виллебранда (БВ) и наследственная геморрагическая телеангиэктазия. БВ является заболеванием, при котором дефицит фактора VII часто оказывается недостаточным для продления АЧТВ. Пациентов с нормальными результатами первичных исследований и при наличии симптомов или признаков кровотечения, с положительным семейным анамнезом нужно обследовать на БВ.

При наличии тромбоцитопении мазок периферической крови часто указывает на ее причину (табл. 143–3). Если мазок нормальный, то пациенты должны пройти анализ на ВИЧ. Если результат теста на ВИЧ отрицательный, беременность отсутствует и пациент не принимал препаратов, вызывающих разрушение тромбоцитов, то это скорее всего идиопатическая тромбоцитопения у ВИЧ-инфицированных. Пациенты с нормальными результатами первичных исследований и при наличии симптомов или признаков кровотечения, с положительным семейным анамнезом нужно обследовать на БВ.

Увеличенное АЧТВ с нормальными тромбоцитами и ПВ указывает на гемофилию A или В. Необходимо проведение исследования на фактор VIII или IX. К ингибиторам, увеличивающим АЧТВ, относятся аутоантитела против фактора VIII и антитела против протеиново-фосфолипид-
Тромботические заболевания

У здоровых людей гомеостатическое равновесие находится между прокоагулянтными (свертывание), антикоагулянтными и фибринолитическими силами. Многочисленные генетические, приобретенные и внешние факторы могут сдвинуть равновесие в сторону коагуляции, приводящей к патологическому образованию тромбов в венах (например, глубокий венозный тромбоз [ГВТ]), артериях (например, инфаркт миокарда, ишемический инсульт) или камерах сердца. Тромбы могут блокировать приток крови в месте образования или отсоединяться и эмболизировать, блокируя отдаленные кровеносные сосуды (например, легочная эмболия, эмболический инсульт).
Глава 145. Тромботические заболевания

Этиология

Генетические нарушения, повышающие склонность к венозной тромбоэмболии, включают:
- мутацию фактора V Лейдена, которая вызывает резистентность к активированному протеину С;
- генную мутацию протромбина 20210;
- дефицит протеина С, протеина S, белка Z или антивитромбина.

Приобретенные нарушения также предрасполагают к венозному или артериальному тромбоэму (табл. 145–1).

Другие нарушения и внешние факторы могут повысить риск тромбоза, особенно при наличии генетических нарушений.

Диагностика

Диагностика представлена в разделе пособия, в соответствии с местом образования тромба.

Предрасполагающие факторы. Во внимание всегда должны быть приняты предрасполагающие факторы. В некоторых случаях они являются клинически очевидными (например, недавние операции или травмы, продленная иммобилизация, рак, генетизированный атеросклероз). При отсутствии ярко выраженных предрасположенностей дальнейшее обследование больных должно быть связано:
- со случаями возникновения венозных тромбов в семье;
- более чем с 1 перенесенным венозным тромбозом;
- с венозным или артериальным тромбозом в возрасте до 50 лет;
- с необычными местами возникновения венозного тромбоза (например, кавернозный синус, брыжеечные вены).

У половины больных с внезапно возникшим глубоким венозным тромбозом имеется генетическая предрасположенность.

Тестирование на наследственную предрасположенность включает измерения количества активности природных молекул антикоагулята в плазме и тесты на специфические дефекты гена. Тестирование начинается с группы скрининговых тестов, а затем (если понадобится) продолжается при помощи специального анализа.

Лечение

Лечение собрано в разделе пособия, в соответствии с местом образования тромба.
Резистентность фактора V к активированному Протеину C

АПС (в комплексе с протеином S) ослабляет факторы Va и VIIIa, препятствуя таким образом коагуляции. Любая из нескольких мутаций фактора V делает его резистентным к инактивации АПС, увеличивая склонность к тромбообразованию. Наиболее распространенным из этих мутаций является фактор V Лейдена. Гомозиготные мутации повышают риск тромбоза больше, чем гетерозиготные.

Фактор V Лейдена, как генный дефект в европейской популяции, присутствует примерно у 5%, он редко возникает в азиатских или африканских популяциях. Данный фактор присутствует у 20–60% больных со спонтанным венозным тромбозом.

Диагноз основывается на функциональном анализе коагуляции плазмы (неудача при попытке получить увеличенное АЧТВ в присутствии веном-активированного протеина С в плазме пациента) и молекулярном анализе гена фактора V.

Лечение, в случае необходимости, включает антикоагуляцию с гепарином с последующим использованием варфарина.

Дефицит Протеина S

Протеин S является витамин K-зависимым белком и представляет собой кофактор АПС-опосредованного расщепления фактора Va и VIIIa. Гетерозиготная недостаточность протеина S в плазме способствует венозному тромбозу и похожа на нехватку протеина C по генетической передаче, распространенности, лабораторным исследованиям, лечению и мерам предосторожности. Гомозиготная недостаточность протеина S может привести к возникновению молниеносной пурпуры у новорожденных, которая клинически не отличается от вызванной гомозиготной недостаточностью протеина C. Приобретенный дефицит протеина S (и протеина C) возникает во время ДВС, терапии варфарином и после L-аспарагиназы.

Диагноз ставится на основании антигенных анализов общего или свободного протеина S в плазме (свободный протеин S является формой, не связанной с С4-связывающим протеином.)

Дефицит Протеина Z

Протеин Z является еще одним витамин K-зависимым белком и действует как кофактор для подавления коагуляции путем образования комплекса с протеином плазмы, Z-зависимым ингибитором протеазы (ЗИП). Комплекс инактивирует факторы Xа, XI, IX на поверхности фосфолипидов. Последствия нехватки протеина Z или ЗИП при патофизиологии тромбоза и потере плода не прояснены, однако дефект может увеличить вероятность возникновения тромбоза, если у больных с симптоматическим тромбозом нуждаются в антикоагуляции гепарином или низкомолекулярным гепарином, а затем варфарином; использование антагонистов витамина K, варфарина в качестве начальной терапии вызывает тромботический инфаркт кожи за счет снижения уровня витамина K-зависимого протеина Z до такого как произошло терапевтическое снижение в большинстве факторов свертывания крови, зависимых от витамина K. Молниеносная неонатальная пурпура без замещения протеина S (с использованием нормальной плазмы или очищенного концентрата) и антикоагулянтной терапии гепарином приводит к летальному исходу.
Дефицит антитромбина

Антитромбин является протеином, который ингибирует тромбин и факторы Xa, IXa и XIa. Распространенность гетерозиготного дефицита антитромбина плазмы составляет приблизительно от 0,2 до 0,4%; около половины из них страдают от развития венозного тромбоза. Гомозиготный дефицит, как правило, является смертельным для плода в период внутриутробного развития. Приобретенный дефицит возникает у пациентов с ДВС, болезнями печени или нефrotическим синдромом и во время гепариновой терапии или терапии L-аспарагиназой.

Лабораторные исследования включают определение количества ингибированного плазмой тромбина в присутствии гепарина. Пероральный варфарин используется для профилактики венозной тромбоэмболии.

Генная мутация протромбина 20210

Мутация протромбина 20210 вызывает повышение уровня плазменного протромбина и увеличение риска венозной тромбоэмболии. Лечение, если это необходимо, включает антикоагуляцию с гепарином с последующим применением варфарина.

Синдром антифосфолипидных антител (антикардиолипиновые антитела; лупус антикоагулянт)

Синдром антифосфолипидных антител включает тромбоз и (при беременности) гибель плода, связанную с различными аутоиммунными антителами, направленными против одного или более фосфолипид-связывающих протеинов (например, β2-гликопротеин I, протромбин, аннексин). Эти протеины обычно связываются с фосфолипидными компонентами мембраны и защищают их от чрезмерной активации коагуляции. Аутоантитела мешают защитные протеины и, таким образом, производят прокоагулянтную поверхность эндотелиальных клеток и вызывают артериальные или венозные тромбы. В искусственных условиях результаты тестов на свертываемость могут парадоксальным образом быть пролонгированы, т.к. антипротеин/фосфолипидные антитела мешают скоплению коагуляционных факторов и активации на фосфолипидных компонентах, добавленных к плазме, чтобы начать испытания. Волчаночный антикоагулянт является антифосфолипидным аутоантителом, которое связывается с протеин-фосфолипидным комплексом. Изначально он был выявлен у больных СКВ, но эти пациенты в настоящее время составляют меньшинство пациентов с аутоантителами.

Волчаночный антикоагулянт подозревают, если АЧТВ увеличено и не приходит в норму сразу после смешивания в соотношении 1:1 с нормальной плазмой, но корректируется при добавлении избыточного количества фосфолипидов (сделанных гематологической лабораторией). Антифосфолипидные антитела в плазме пациента измеряют с помощью иммуноанализа IgG и IgM, которые связываются с фосфолипидами β2-гликопротеин I комплексом на микротитрационных планшетах.

Для профилактики и лечения применяются гепарин, варфарин и аспирин.

Гипергомоцистеинемия

Гипергомоцистеинемия может способствовать развитию артериальных тромбов и венозной тромбоэмболии, возможно, вследствие повреждения эндотелиальных клеток сосудов. Уровень гомоцистеина в плазме повышен более чем в 10 раз при гомозиготном дефиците цистатинин β-синтазы. Более мягкие повышения возникают при гетерозиготном дефиците и других нарушениях метаболизма фолатов, включающие дефицит метилтетрагидрофолатдегидрогеназы. На сегодняшний день наиболее распространенной причиной гипергомоцистеинемии является приобретенный дефицит фолевой кислоты, витамина B12 или B6.

Диагноз устанавливается путем измерения уровней гомоцистеина в плазме.
Уровень гомоцистеина в плазме можно нормализовать при употреблении пищевых добавок с фолиевой кислотой, витамином В₁₂ или витамином В₆ (пиридоксин) отдельно или в комбинации. Однако пока не доказано, что эта терапия снижает риск артериального или венозного тромбоза.

146 Коагуляционные нарушения

Причинами аномального кровотечения могут быть нарушения коагуляционной системы, тромбоцитов или кровеносных сосудов. Эти нарушения могут быть наследственными и приобретенными. Основными причинами приобретенных коагуляционных нарушений являются недостаток витамина K, заболевания печени, диссеминированное внутрисосудистое свертывание, и наличие циркулирующих антикоагулянтов. Тяжелые заболевания печени (например, цирроз печени, молниеносный гепатит, острая жировая дистрофия печени у беременных) вследствие нарушения синтеза факторов свертывания могут нарушить гемостаз. Так как все факторы свертывания крови производятся в печени, то показатели ПВ (протромбинированное время) и АЧТВ (активное частичное тромбоцитарное время) при тяжелых заболеваниях возрастают. (Результаты ПВ, как правило, представлены как МНО). Иногда, декомпенсированное заболевание печени также вызывает чрезмерный фибринолиз и кровотечение из-за снижения печеночного синтеза α₂-антиплазмина.

Наиболее распространенным наследственным заболеванием гемостаза является болезнь Виллебранда. Наиболее распространенным генетическим коагуляционным нарушением является гемофилия.

Диссеминированное внутрисосудистое свертывание (коагулопатия потребления; синдром дефибринации) диссеминированное внутрисосудистое свертывание крови (ДВС) включает аномальное, чрезмерное образование тромбина и фибрина в циркулирующей крови. В ходе этого процесса возникает увеличение агрегации тромбоцитов и потребления факторов свертывания крови. Медленно развивающийся ДВС (в течение недель или месяцев) вызывает в первую очередь проявления венозного тромбоза и эмболии; быстро развивающийся ДВС (в течение нескольких часов или дней) вызывает кровотечение. На тяжелый, быстро развивающийся ДВС указывает наличие тромбоцитопении, повышенное уровни плазменного D-димера (или других продуктов распада фибрина) и снижение уровня фибриногена в плазме. Лечение включает в себя борьбу с причинами, вызывающими ДВС, и применением тромбоцитов, факторов свертывания крови (в свежезамороженной плазме) и фибриногена (в криопреципитате) для борьбы с сильным кровотечением. Гепарин используется в качестве терапии или профилактики для больных с медленно развивающимся ДВС, у которых наблюдается или имеется риск тромбоэмболии.

Этиология

ДВС обычно возникает в результате воздействия тканевого фактора на кровь, вызывая коагуляционный каскад. ДВС возникает в следующих клинических случаях:

- осложнения при родах (например, отслоение плаценты, индуцированный солевым раствором аборт по медицинским показаниям, сохраненный мертвой плод или продукты зачатия, эмболия околоплодными водами): плацентарная ткань с активным тканевым фактором входит в контакт или циркулирует в крови матери;
- инфекции, особенно вызванные грамотрицательными микроорганизмами: грамотрицательный эндотоксин вызывает выработку или активирует тканевые факторы в фагоцитарных, эндотелиальных и тканевых клетках;
рак, в частности мукозная аденоакрио-
ма поджелудочной и предстательной желез и
острый промиелоцитарный лейкоз (опухоле-
вые клетки выделяют тканевой фактор);
Реакция на любые условия, которые вызы-
вают ишемические повреждения тканей и
освобождают тканевой фактор.

К менее распространенным причинам воз-
никновения ДВС можно отнести тяжелые по-
вреждения ткани вследствие травмы головы,
ожогов, обморожения или огнестрельных ране-
ний; осложнения при операциях предстатель-
ной железы, при которых материал предстатель-
ной железы с активностью тканевого фактора
(наряду с активаторами плазминогена) может
попасть в кровообращение; укус ядовитой змеи,
при котором фермент поступает в кровообра-
щение, активирует один или несколько факто-
ров свертывания крови и либо создает тромбин,
либо непосредственно превращает фибриноген
в фибрин; глубокий внутрисосудистый гемолиз,
anевризма аорты или наличие кавернозных ге-
мангиом (синдром Касабаха–Меррита), связан-
ных с повреждения стенок сосудов и участков
застоя крови.

Патофизиология
Медленно развивающийся ДВС прежде всего вызывает симптомы венозного тромбоэм-
болии (например, глубокий венозный тромбоз,
легочная эмболия), хотя иногда происходит ве-
гетация сердечного клапана; аномальное кро-
вотечение нехарактерно для данной ситуации.
Тяжелый быстро развивающийся ДВС, на-
оборот, вызывает тромбоцитопению и деплецию плазменных факторов свертывания крови и фи-
бриногена, что вызывает кровотечение. Крово-
течение в органы, вместе с микроваскулярными тромбозами может вызвать расстройство сразу в нескольких органах. Задержка растворения фибринового полимера фибринолизом может привести к механическим разрушениям эритро-
цитов, производству шизоцитов и внутрисосу-
дистому гемолизу.

Симптомы и признаки
При медленно развивающемся ДВС могут по-
являться симптомы венозного тромбоза.

При тяжелом быстро развивающемся ДВС места проколов кожи (например, внутривенные или артериальные проколы) могут сильно кро-
воточить, на местах парентеральных инъекций могут появляться синяки и может возникнуть сильное кровотечение в желудочно-кишечном тракте.

Диагностика
Количество тромбоцитов, протромбиновое время, АЧТВ, содержание фибриногена в плазме, D-димер в плазме.
ДВС подозревают у пациентов с необъяс-
нимым кровотечением или венозным тромбо-
эмболизмом, особенно если есть предраспо-
ложение. Если у пациента подозревают ДВС, то необходимо провести анализ на количество тромбоцитов, протромбиновое время, АЧТВ, уровень фибриногена в плазме и уровень D-ди-
мера (определение смещения и распада фибри-
на в искусственно созданных условиях).
Медленно развивающийся ДВС сопровожда-
ется легкой тромбоцитопенией, показателями ПВ (обычно представлен как МНО) и АЧТВ в пределах от минимально увеличенного до нормального, нормальным или немного зани-
женным уровнем фибриногена и повышенным D-димером в плазме. По причине того, что различные заболевания стимулируют повышенный синтез фибриногена как вещества острой фазы, снижение уровня фибриногена на 2 последова-
тельных измерения может помочь определить ДВС. Начальные значения АЧТВ при медленно развивающемся ДВС могут фактически быть меньше, чем обычно, вероятно, из-за наличия активированных факторов свертывания в плазме.
Тяжелый быстро развивающийся ДВС вы-
ражается в более тяжелой тромбоцитопении, более продолжительном ПВ и АЧТВ, резко пада-
ющем уровне фибриногена и высоком уровне D-димера в плазме.
Определение уровня фактора VIII иногда может быть полезно, если необходимо отличить тяжелый, острый ДВС-синдром от массивного некроза печени, который может вызывать по-
добные аномалии в коагуляции. При некрозе печени уровень фактора VIII повышается, т.к.
этот фактор производится в гепатоцитах и выбрасывается при их разрушении; при ДВС фактор VIII снижается из-за индуцированного тромбином образования активированного протеина С, который подвергает протеолизу фактор VIII.

Лечение
- Лечение основной причины.
- Возможна заместительная терапия (например, тромбоциты, криопреципитат, свежезамороженная плазма, естественные антикоагулянты).
- Иногда гепарин.

Приоритетным направлением лечения является незамедлительная борьба с причиной возникновения заболевания (например, лечение подозреваемого грамотрицательного сепсиса антибиотиком широкого спектра, вычищение матки при преждевременной отслойке плаценты). Если лечение эффективно, ДВС должен исчезнуть быстро. Если кровотечение является тяжелым, то требуется дополнительная заместительная терапия, состоящая из концентрата тромбоцитов для борьбы с тромбоцитопенией, криопреципитата для замены фибриногена и фактора VIII и свежезамороженной плазмы для увеличения уровней других факторов свертывания крови и естественных антикоагулянтов (антипрокоумина, протеинов C, S, и Z). Вопрос об эффективности вливания концентратов антипрокоумина или активированного протеина С при тяжелом быстро развивающемся ДВС остается нерешенным.

Гепарин очень полезен при лечении медленно развивающегося ДВС с венозными тромбозами или легочным эмболизмом. Гепарин не применяется в случаях быстро развивающегося ДВС с кровотечением или риском его возникновения, за исключением случаев женщин с мертвенным плодом и развивающегося ДВС с сильно сниженными показателями тромбоцитов, фибриногена и факторов свертывания крови. Таким пациентам гепарин назначают на несколько дней с целью контроля над ДВС, увеличением фибриногена и уровня тромбоцитов и снижения поглощения факторов свертывания крови. Потом лечение гепарином прекращается и матку вычищают.

ГЕМОФИЛИЯ
Гемофилия является общим наследственным нарушением свертываемости крови, вызванным недостатком фактора свертывания крови VIII или IX. Частоту и тяжесть кровотечений определяет степень дефицита фактора. Кровоизлияние в глубоких тканях и суставах обычно развивается в течение нескольких часов после травмы. Гемофилия диагностируется у пациентов с повышенным АЧТВ, нормальным ПВ и количеством тромбоцитов; это подтверждается путем проведения специфических анализов фактора. Лечение включает в себя замену недостаточного фактора при подозрении/подтверждении/склонности к развитию (например, перед операцией) острого кровотечения.

Гемофилия A (недостаточность фактора VIII), которая поражает около 80% больных гемофилией, и гемофилия B (недостаточность фактора IX) имеют одинаковые клинические проявления, нарушения скрининг-теста и X-хромосомной генетической передачи. Специальные анализы факторов позволяют их различать.

Этиология
Гемофилия – наследственное заболевание, которое появляется в результате мутации, делеции или инверсии гена фактора VIII или фактора IX. Гемофилия поражает исключительно мужчин, т.к. эти гены расположены в X-хромосоме. Носителями гена являются исключительно дочери мужчин с гемофилией, к сыновьям это не относится. Каждый сын носительницы гена имеет 50% шанс заболеть гемофилией, а каждая дочь с 50% вероятностью может стать носительницей.

Патофизиология
Для нормального гемостаза требуется более 30% уровня факторов VIII и IX. У большинства пациентов с гемофилией этот показатель менее 5%. У носителей этот уровень обычно достигает 50%; редко при случайной инактивации в ранней эмбриональной жизни их нормальной X-хромосомы уровень фактора VIII или IX у носителей становится менее 30%.

Большинство пациентов, которых в начале 1980-х годов лечили концентратом плазмы, из-за концентрации фактора заражения были
заражены ВИЧ-инфекцией. У некоторых больных вторично по отношению к ВИЧ-инфекции развилась иммунная тромбоцитопения, которая усугубляет кровотечение.

Симптомы и признаки
Для пациентов с гемофилией характерны распространенные кровотечения в тканях (например, гемартрозы, мышечные гематомы, забрюшинные кровоизлиния). Кровотечение может быть быстрым или появляться медленно, в зависимости от степени травмы и уровня фактора VIII или IX. Большую часть возникает в самом начале кровотечения, иногда даже раньше других признаков кровотечения. Хронические или рецидивирующие гемартрозы могут привести к синовитам и артропатии. Даже несильный удар по голове может привести к внутричерепному кровотечению. Кровотечение в основном мягка может привести к угрожающему для жизни сжатию дыхательных путей.

Тяжелая форма гемофилии (уровень факторов VIII или IX менее 1% от нормы) вызывает тяжелые кровотечения в течение жизни, начиная с самого рождения (например, гематома волосистой части головы после родов или чрезмерное кровотечение после обрезания). При умеренной гемофилии (уровни факторов от 1 до 5% от нормы) кровотечение возникает при наличии минимальной травмы. В случае легкой гемофилии (уровень фактора от 5 до 25% от нормы) сильное кровотечение может возникать при хирургическом вмешательстве или удалении зуба.

Диагностика
■ Количество тромбоцитов, протромбиновое время, АЧТВ, анализы фактора VIII и IX.
■ Иногда уровень активности фактора Виллебранда, антиген и состав мультимера.

Гемофилия диагностируется у пациентов с рецидивирующим кровотечением, необъяснимыми гемартрозами или продолжительным АЧТВ. Если у пациента подозревают тромбоцитопению, необходимо проведение анализов на определение количества тромбоцитов, протромбинового времени, АЧТВ, фактора VIII и IX. При гемофилии АЧТВ увеличивается, а протромбиновое время и количество тромбоцитов остаются в пределах нормы. Анализ фактора VIII и IX помогает определить тип и степень тяжести гемофилии. Поскольку уровень фактора VIII также может быть снижен вследствие болезни Виллебранда (БВ), то у пациентов с его активностью фактора Виллебранда (ФВ), его антиген и состав мультимера. Определение того, является ли женщина истинным носителем гемофилии А, иногда возможно путем измерения уровня фактора VIII. Кроме того, измерения уровня фактора IX часто идентифицирует носителей гемофилии В. ПЦР-анализ ДНК, который включает в себя ген фактора VIII, может быть использован для выявления носителя гемофилии А и пренательной диагностики гемофилии А по биопсии хорионы в 12 недель или при амниоцентезе в 16 неделю. Но риск выкидыша от таких процедур колеблется от 0,5 до 1%.

После многократного воздействия на фактор VIII путем замены у 15–35% больных гемофилией А появляются изоантитела (аллоантитела), которые блокируют активность коагулянта при каждом дополнительному введении фактора VIII. Пациентов нужно исследовать на образование изоантител (например, путем измерения степени уменьшения АЧТВ сразу после смешивания плазмы пациента с равным объемом нормальной плазмы, а затем повторяя измерения после инкубации в течение 1 ч), особенно перед факультативными процедурами, которые требуют проведения заместительной терапии. Если изоантитела присутствуют, то их титры могут быть измерены путем определения степени снижения интенсивности фактора VIII при проведении серии разжижений плазмы пациента.

Профилактика
Больные гемофилией должны избегать приема аспирина и нестероидных противовоспалительных препаратов (они замедляют тромбоцитопению). Регулярный уход за полостью рта поможет избежать удаления зубов и других стоматологических хирургических вме-
шательств. Лекарства нужно принимать орально или внутривенно; после внутримышечных инъекций остаются гематомы. Больных гемофилией нужно прививать против гепатита В.

Лечение

- Замена отсутствующего фактора.
- Иногда антифибринолитики.

Если симптомы включают в себя кровотечение, то лечение необходимо начинать безотлагательно, даже если диагностические исследования еще не завершены. Например, лечение головной боли, которая может указывать на внутричерепное кровоизлияние, должно начаться до завершения КТ.

Замена недостающего фактора является первостепенной задачей. При гемофилии А уровень фактора VIII должен быть поднят примерно:

- до 30% от нормы для предотвращения кровотечения после удаления зуба или во избежание начинающегося суставного кровотечения;
- до 50% от нормы, если тяжелое суставное или внутримышечное кровотечение уже очевидно;
- до 100% от нормы перед серьезным хирургическим вмешательством или если это внутричерепное, внутрисердечное или другое угрожающее для жизни кровотечение.

Многократные вливания в размере 50% от изначально рассчитанной начальной дозы следует делать каждые 8–12 часов, чтобы сохранить минимальный уровень выше 50% в течение 7–10 дней после серьезной операции или опасного для жизни кровотечения. Каждая единица/кг фактора VIII повышает уровень фактора VIII примерно на 2%. Таким образом, для повышения уровня от 0 до 50% потребуется около 25 единиц/кг.

Фактор VIII представляет собой очищенный концентрат фактор VIII, полученный от нескольких доноров. Он подвергается противовирусной обработке, но эта обработка не может полностью исключить парвовирус или гепатит А. Рекомбинантный фактор VIII не содержит вирусов и обычно предпочтительнее, если только пациенты уже не являются носителями ВИЧ или вируса гепатита В или С.

При гемофилии B фактор IX может вводиться как очищенный, прошедший антивирусную обработку или рекомбинантный продукт каждые 24 часа. Показатели уровней коррекции коэффициента такие же, как и при гемофилии А. Однако для достижения этих уровней доза должна быть выше, чем при гемофилии А, поскольку фактор IX меньше, чем фактор VIII, и в отличие от VIII имеет широкое несогласованное распределение.

Свежезамороженная плазма содержит факторы VIII и IX. Однако пока плазмаферез не будет сделан, как правило, пациентам с тяжелой формой гемофилии для увеличения фактора VIII или IX до уровней, на которых возможно избежать и профилактировать кровотечение, целесообразно не назначать. Таким образом, свежезамороженную плазму можно использовать только в случае необходимости проведения быстрой заместительной терапии при недостаточности концентратов фактора или наличия у пациента коагулопатии, которая еще не определена точно.

Больным гемофилией, у которых выработался ингибитор к фактору VIII, лучше всего применять в лечении многократные высокие дозы рекомбинантного фактора VIIa (например, 90μг/кг).

Дополнительная терапия может включать десмопрессин или антифибринолитические препараты. Как описано для болезни Вилле-Бранда, десмопрессин может временно повышать уровень фактора VIII. Перед использованием десмопрессина в терапевтических целях реакция больного на препарат должна быть проверена. Его использование после небольшой травмы или перед стоматологической хирургической операцией может заменить заместительную терапию. Десмопрессин может применяться только для больных с легкой формой гемофилии А (базисный уровень фактора VIII ≥5%), у которых наблюдается положительная реакция на терапию.

Антифибринолитический препарат (ε-аминокапроновая кислота 2,5–4 г дважды в неделю) применяется для предотвращения поздних кровотечений после удаления зубов или других травм сли-
зистой оболочки ротоглотки (например, рваная рана языка).

КОАГУЛЯЦИОННЫЕ НАРУШЕНИЯ, ВЫЗВАННЫЕ ЦИРКУЛИРУЮЩИМИ АНТИКОАГУЛЯНТАМИ

Циркулирующие антикоагулянты представляют собой аутоантитела, которые в естественной среде нейтрализуют специфические факторы свертывания крови (например, антитела к фактору VIII или фактору V) или замедляют протеинсвязанные фосфолипиды в искусственных условиях. Иногда поздний тип аутоантител в естественных условиях, связывая протромбин, вызывает кровотечение.

У больных с сильным кровотечением в сочетании с длительным АЧТВ или ПВ, которое не приходит в норму при повторяющемся проведении теста на смеси нормальной плазмы и плазмы больного в соотношении 1:1, следует подозревать циркулирующие антикоагулянты.

Антифосфолипидные антитела обычно вызывают тромбозы. В некоторых случаях антитела связываются с протромбиново-фосфолипидным комплексом и вызывают гипопротромбинемию и кровотечение.

АНТИКОАГУЛЯНТЫ ФАКТОРА VIII

Изоантитела к фактору VIII развиваются примерно у 15–35% больных с тяжелой формой гемофилии A как осложнение после многократного воздействия нормальными молекулами VIII фактора при заместительной терапии. Антитела к фактору VIII могут иногда возникать у больных, не имеющих гемофилии, например у женщин после родов как проявление системного аутоиммунного заболевания, при транзиторном нарушении иммунной регуляции, у пожилых больных при наличии других заболеваний. У больных с антикоагулянтами фактора VIII могут развиваться опасные для жизни кровотечения.

Плазма, содержащая антитела фактора VIII, характеризуется длительным АЧТВ, которое не корректируется при добавлении нормальной плазмы или других источников фактора VIII в соотношении 1:1 к плазме больного. Анализ проводится сразу после теста смешения и по прошествии инкубационного периода.

Терапия с циклофосфамидом и кортикостероидами может подавлять производство аутоантител у пациентов без гемофилии. У женщин в послеродовом периоде аутоантитела могут исчезнуть спонтанно. Управление острой кровопотерей у больных гемофилией, у которых присутствуют изоантитела и аутоантитела фактора VIII, ведется при помощи рекомбинантного фактора VIIa.

РЕДКИЕ НАСЛЕДСТВЕННЫЕ КОАГУЛЯЦИОННЫЕ НАРУШЕНИЯ

Большинство наследственных нарушений свертываемости крови, кроме гемофилии, представляют собой редкие аутосомно-рецессивные расстройства, которые вызывают заболевание только у гомозиготных людей (табл. 146–1). Недостаток фактора XI является редким среди населения в целом, но распространенными у потомков европейских евреев ашкенази (встречаемость этого гена примерно от 5 до 9%). Кровотечение обычно начинается после серьезных повреждений, в т.ч. травм или операций, у людей, которые гомозиготны или чьи гетерозиготы соединены.

Низкое содержание α₂-антиплазмина (от 1 до 3% от нормы), основного физиологического ингибитора плазмина, также может привести к кровотечению. Диагноз основан на проведении специальных исследований α₂-антиплазмина. Эпилен-аминокапроновая кислота и транексамовая кислота используются для контроля или профилактики острых кровотечений у гомозигот. У гетерозиготных людей с уровнем α₂-антиплазмина от 40 до 60% иногда возникает кровотечение вследствие хирургического вмешательства при экстенсивном вторичном фибринолизе (например, у больных, у которых была открытая простатэктомия).
<table>
<thead>
<tr>
<th>РЕЗУЛЬТАТЫ СКРИНИНГ-ТЕСТА</th>
<th>ДЕФЕКТ</th>
<th>КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>АЧТВ увеличено</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПВ в норме</td>
<td>Фактор XII, высокомолекулярный кининоген или прекалликреин</td>
<td>Лабораторные тесты указывают на нарушение без клинического кровотечения. При помощи анализов необходимо отличить выявленные дефекты от нехватки фактора XI, при котором может произойти посттравматическое или периоперационное кровотечение.</td>
</tr>
<tr>
<td>АЧТВ увеличено</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПВ в норме</td>
<td>Фактор XI</td>
<td>Августо-рецессивный тип наследования. Увеличение частоты у евреев ашкенази. Поствтравматическое или периоперационное кровотечение. Диагностируется с применением специальных анализов. При кровотечении: 5–20 мл/кг/день свежезамороженной плазмы для того, чтобы поддержать уровень фактора ХI выше 30%</td>
</tr>
<tr>
<td>АЧТВ увеличено</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПВ в норме</td>
<td>Фактор VIII или IX</td>
<td>Недостаток фактора VIII (гемофилия А) Недостаток фактора IX (гемофилия В) X-хромосомная передача. Легкое или тяжелое кровотечение у мужчин в зависимости от уровня фактора VIII или IX.</td>
</tr>
<tr>
<td>АЧТВ в норме, ПВ увеличено</td>
<td>Фактор VII</td>
<td>Августо-рецессивный тип наследования. Редкий случай. Если наблюдается сильная нехватка (уровень менее 2%), то возможно сильное кровотечение. Если уровень более 5%, то вероятна легкая форма кровотечения или его отсутствие. Выбор терапии: рекомбинантный фактор VIIа.</td>
</tr>
<tr>
<td>АЧТВ увеличено</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПВ увеличено</td>
<td>Фактор Х, V или протромбин</td>
<td>Августо-рецессивный тип наследования. Редкий случай. Кровотечение от легкой до тяжелой формы. Диагностируется с применением специальных анализов. При кровотечении из-за нехватки фактора Х или протромбина: свежезамороженная плазма или концентрат протромбинового комплекса. Для лечения: криопреципитаты (5–10 пакетов, в каждом примерно по 250 мг фибриногенов).</td>
</tr>
<tr>
<td>При афибриногенемии</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(фибриноген менее 10 мг/дл)</td>
<td></td>
<td>Отсутствие тромбообразования при АЧТВ и ПВ, т.к. конечная точка аппарата не задана. При гипофibriномегении (фибриноген 70–100 мг/дл), АЧТВ и ПВ довольно часто увеличены на несколько секунд и долгое тромбиновое время.</td>
</tr>
<tr>
<td>ПВ и АЧТВ увеличены</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тромбиновое время увеличено</td>
<td></td>
<td>Различные проявления (отсутствие или только легкая форма кровотечения, поствтравматическое или периоперационное кровотечение, тенденция к образованию тромбозов, расхождение краев раны) Уровень фибриногена низкий при анализе коагулирующей активности, но нормальный при иммунологическом анализе.</td>
</tr>
<tr>
<td>АЧТВ в норме</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПВ в норме, тромбиновое время в норме</td>
<td>Фактор XIII</td>
<td>Августо-рецессивный тип наследования. Редкий случай. Глухое заживление ран. Выкидыш у женщин. Тяжелые кровотечения при уровне менее 1% Для лечения: свежезамороженная плазма (1–2 единицы 4–6 недель будет эффективно, поскольку период полураспада фактора XIII около 10 дней).</td>
</tr>
<tr>
<td>АЧТВ и ПВ в норме</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ускорение фибринолиза в 5 М мочевины</td>
<td>Нехватка α2-антиплазмина</td>
<td>Тяжелые кровотечения в гомозиготном состоянии. поствтравматическое или периоперационное кровотечение в гетерозиготном состоянии. Для подтверждения диагноза необходимо проведение специальных анализов.</td>
</tr>
</tbody>
</table>

*Результаты ПВ отвечают МНО.
Глава 147. Кровотечения, вызванные повреждением кровеносных сосудов (вазопатии)

Кровотечение может возникать из-за аномалий в тромбоцитах, коагуляционных факторах или кровеносных сосудах. Сосудистые нарушения свертываемости крови возникают из-за повреждения кровеносных сосудов и обычно сопровождаются петехиями, пурпурой и синяками, но, за исключением случаев наследственной геморрагической телеангиэктазии, они редко приводят к серьезным кровопотерям. Кровотечение может возникнуть из-за недостатка сосудистого и пери-васкулярного коллагена в случае синдрома Элерса–Данлоса и при других редких наследственных заболеваниях соединительной ткани (например, эластическая псевдоксантома, несовершенный остеогенез, синдром Марфана). Кровоизлияние может быть характерной особенностью цинги или пурпуры Шенлейна–Геноха (анафилактоидная пурпура или аллергический васкулит, распространенный у детей). Показатели тестов на гемостаз при сосудистых нарушениях свертываемости крови обычно находятся в пределах нормы. Для большинства случаев диагностика заболеваний устанавливается на основании клинических признаков, однако в некоторых случаях требуется проведение специальных исследований.

АУТОЭРИТРОЦИТАРНАЯ СЕНСИБИЛИЗАЦИЯ (СИНДРОМ ГАРДНЕРА–ДАЙМОНДА)

Аутоэритроцитарная сенсибилизация – это редкое заболевание, которым болеют только женщины. Для него характерны локальные боли и обжигающие болезненные кровоизлияния (экхимозы), возникающие преимущественно на конечностях.

Аутоэритроцитарная сенсибилизация обычно возникает у белых женщин в состоянии эмоционального стресса или страдающих от сопутствующих психо-невротических расстройств. Появление экхимозов сопровождается острой болью и возникает неожиданно без причин или после травмы или хирургического вмешательства. Кровоизлияние может появиться на различных участках тела обычно в тех местах, где ранее была травма. Показатели анализов коагуляционной системы в норме.

У женщин с аутоэритроцитарной сенсибилизацией внутрикожные инъекции 0,1 мл аутологичных эритроцитов или их оболочек (стромы) вызывают боль, отек или уплотнение в месте инъекции. Эта проба позволяет установить, что проникновение эритроцитов в ткани связано с патогенезом пурпуры. У большинства пациентов также проявляются сопутствующие острые психоневротические симптомы. Психогенные факторы, такие как самоиндуктированная пурпура, по-видимому, связаны с патогенезом синдрома у некоторых пациентов.

Диагностика основывается на сравнительном исследовании места внутрикожной инъекции аутологичных эритроцитов и места другой инъекции (без эритроцитов) от 24 до 48 часов после ее введения. Расчесы, которые могут осложнить интерпретацию результатов теста, можно предотвратить, выбрав труднодоступные для пациента места для инъекций.

Лечением является терапевтическое и психиатрическое вмешательство.

ДИСПРОТЕИНЕМИЯ, ВЫЗЫВАЮЩАЯ СОСУДИСТУЮ ПУРПУРУ

Циркуляция аномальных протеинов в крови, обычно в форме иммунноблобулинов, может увеличить хрупкость сосудов и привести к появлению пурпуры.

Амилоидоз сопровождается отложением амилоида в сосудах, в коже и подкожных тканих, что может увеличить хрупкость сосудов, вызывая при этом пурпуру. У некоторых пациентов коагуляционный фактор X поглощается амилоидом посредством адсорбции (адсорбируется) и его уровень в крови становится
недостаточным, но эта недостаточность обычно не является причиной кровотечения. Важным клиническим признаком амилоидоза является периорбитальная пурпура или пурпурная сыпь, которая развивается у нетромбоцитопенических пациентов после мягкого поглаживания кожи. У большинства пациентов в сыворотке наблюдается повышенный уровень свободных легких цепей иммуноглобулинов. Диагностика проводится при помощи биопсии ткани (например, при двулучепреломлении и окрашивании жировой ткани конго красным).

Криоглобулинемия сопровождается выработкой иммуноглобулинов, которые precipitируют, когда плазма охлаждается при прохождении через кожу и подкожные ткани конечностей. Моноклональные иммуноглобулины, образовавшиеся при макроглобулинемии Вальденстрема или при множественной миеломе, могут вести себя как криоглобулины, а также вызывать IgM-IgG иммунные комплексы, возникающие при некоторых хронических инфекционных заболеваниях, что наиболее типично при гепатите С. Криоглобулинемия может также привести к воспалению мелких сосудов, которое сопровождается пурпурой. Криоглобулины можно диагностировать при проведении лабораторных анализов крови.

Гипергаммаглобулинемическая пурпура представляет собой васкулитную пурпуру, которая прежде всего поражает женщин. Периодически возникающие участки небольших пальпируемых геморрагических поражений возникают на нижней части ног. Эти очаги оставляют небольшие коричневые пятна. У большинства пациентов эти проявления сопровождают основное иммунологическое заболевание (например, синдром Шегрена, системная красная волчанка). Анализы указывают на поликлональное увеличение IgG.

Синдром повышенной вязкости обычно возникает при заметном повышении концентрации в плазме IgM и может также вызывать пурпуру и другие формы аномального кровотечения (например, обильное носовое) у пациентов с макроглобулинемией Вальденстрема. Заметное увеличение других иммуноглобулинов (особенно IgA и IgG3) может также быть связано с синдромом повышенной вязкости.

НАСЛЕДСТВЕННАЯ ГЕМОРРАГИЧЕСКАЯ ТЕЛЕАНГИЭКТАЗИЯ

(болезнь Рандю – Ослера – Вебера)

Наследственная геморрагическая телеангиэктазия является наследственным заболеванием сосудистой мальформации, передаваемым как аутосомно-домinantный признак. Поражает оно как мужчин, так и женщин.

Более чем у 80% пациентов происходит мутация гена эндоглина (ENG), который кодирует рецептор трансформирующего фактора роста beta-1 (TGF-β1) и TGF-β3 или гена MADH4, который кодирует SMAD4, активный белок в сигнальном пути TGF-β.

Симптомы и признаки

Наиболее характерными признаками являются небольшие красно-фиолетовые телеангиэктатические очаги на лице, губах, ротовой и носовой слизистой оболочках, на кончиках пальцев рук и ног. Похожие повреждения могут присутствовать и на слизистой оболочке желудочно-кишечного тракта и вызывать желудочно-кишечное кровотечение. У пациентов периодически отмечаются обильные носовые кровотечения. У некоторых пациентов возникают легочные артериовенозные свищи. Эти свищи могут привести к существенному сбросу крови справа налево, которые могут привести к ошутимой усталости, цианозу или полицитемии. Тем не менее первым признаком их присутствия может быть абсцесс мозга, транзиторные ишемические атаки или инсульт в результате инфицированных или неинфицированных эмболов. Церебральные или спинномозговые артериовенозные мальформации могут вызывать субарахноидальное кровоизлияние, судороги или параплегии. Печеночные артериовенозные мальформации могут привести к печеночной недостаточности и к тяжелой сердечной недостаточности.

Диагностика

- Клинические исследования.
- Иногда эндоскопия или ангиография.
- Иногда генетические тесты.

Диагноз основывается на обнаружении характерных артериовенозных пороков на лице, в
Глава 147. Кровотечения, вызванные повреждением кровеносных сосудов (вазопатии)

полости рта и носа. В некоторых случаях необходимо проведение эндоскопии или ангиографии. Результаты лабораторных исследований, как правило, в норме, за исключением выявления железодефицитной анемии у большинства пациентов.

Тесты на мутации ENG и SMAD4 могут быть полезны в случае пациентов с атипичными признаками или членов семьи, у которых симптомы пока не проявились.

Скрининг. Если в семье были случаи легочных, печеночных или церебральных артериовенозных мальформаций, то рекомендуется скрининг в период полового созревания и в конце подросткового возраста с лёгочной КТ, печеночная КТ и МРТ головного мозга.

Лечение

■ Иногда лазерная аблияция, хирургическая резекция или эмболизация симптоматических артериовенозных мальформаций.
■ Вспомогательная терапия железом.
■ Переливания крови.
■ Иногда применение антифибринолитических препаратов (например, аминокапроновая кислота, транексамовая кислота).

Лечение должно включать в себя поддерживающую терапию, но доступные телангиэкстазии (например, в носу или желудочно-кишечном тракте с помощью эндоскопии) можно вылечить при помощи лазерной аблияции. Артериовенозные свищи можно лечить путем хирургическому вмешательству или эмболизации. По вторные переливания крови могут быть необходимы, поэтому важное значение имеет иммунорегуляция вакцин против гепатита B. Большинство пациентов нуждается в непрерывном лечении железом, чтобы восполнить железо, потерянное при повторяющихся кровотечениях слизистой; многим пациентам требуются парентеральное введение железа, а иногда и эритропоэтина. Лечение препаратами, которые препятствуют фибринолизу, такими как аминокапроновая кислота или транексамовая кислота, может быть полезным.

Основные моменты

■ Назальные и телангиэкстазии желудочно-кишечного тракта могут вызывать обильные внешние кровотечения.
■ Вскользьрные мальформации в ЦНС, легких и печени могут кровоточить; печеночны и лёгочные мальформации могут вызывать сброс крови.
■ Доступные телангиэкстазии слизистой могут быть вылечены при помощи лазерной аблияции; эмболизация или хирургическая резекция могут быть полезными при других вскользьрных мальформациях.
■ Из-за хронических потерь крови многим пациентам требуется железо.

ПУРПУРА СИМПЛЕКС
(легкий ушиб)

Пурпур симплекс представляет собой синяки, увеличиившиеся из-за хрупкости сосудов.

Пурпур симплекс широко распространен. Причины и механизмы ее возникновения пока неизвестны. Пурпур симплекс может представлять собой гетерогенную группу заболеваний или просто быть вариантом нормы.

Ею обычно заболевают женщины. Синяки появляются на бедрах, ягодицах и плечах у людей без какой-либо предшествующей травмы. Других аномальных кровотечений при этом нет, но легкие ушибы могут присутствовать также и у членов семьи. Серьезных кровотечений не происходит. Количество тромбоцитов, результаты теста на тромбоцитарную функцию, свертываемость крови и фибринолиз в норме.

Против синяков лекарств нет; пациентам довольно часто советуют избегать приема аспирина и аспиринсодержащих лекарств, но нет доказательств, что синяки связаны или возникли из-за применения этих препаратов.

СЕНИЛЬНАЯ (СТАРЧЕСКАЯ) ПУРПУРА

Сенильная пурпур вызывает синяки и появляется из-за повышенной хрупкости сосудов, вызванной повреждением соединительной ткани в дерме, возникшим от постоянного воздействия солнца, старения и лекарственных препаратов.

Сенильная пурпур обычно поражает старых людей, т.к. их кожные ткани атрофируют-
ся и кровеносные сосуды становятся более хрупкими. У пациентов развиваются стойкие темно-фиолетовые синяки, которые возникают в районе разгиба руки и предплечья. Новые очаги появляются без предшествующей травмы и держатся в течение нескольких дней, а остают коричневатые потемнения, вызванные отложением гемосидерина. Это потемнение может держаться неделями, месяцами или может стать постоянным. Кожа и подкожная основа затронутых участков часто становится тонкой и атрофированной. Препараты (например, кортикостероиды, варфарин, аспирин, клопидогрел) могут привести к обострению синяков. Никакое лечение не устранит поражения. Хотя и неприятное с косметической точки зрения, это заболевание не имеет последствий для здоровья и не предполагает сильное кровотечение.

148 Заболевания селезенки

По своей структуре и функции селезенка напоминает два различных органа. Белая пульпа, состоящая из периартериальных лимфатических футляров и герминативных центров, выполняет функцию иммунного органа. Красная пульпа, состоящая из макрофагов и гранулоцитов, выстилающих просвет сосудов, является органом фагоцитоза.

В белой пульпе осуществляются продукция и созревание В- и Т-лимфоцитов. В-лимфоциты селезенки синтезируют защитные антитела; при определенных аутоиммунных заболеваниях (иммунная тромбоцитопеническая пурпура [ИТП], Кумбс-позитивные иммунные гемолитические анемии) также могут синтезироваться патологические аутоантитела к циркулирующим элементам крови.

В красной пульпе происходит удаление старых или дефектных эритроцитов, покрытых антителами бактерий или клеток крови (последнее может наблюдаться при иммунных цитопениих, таких как ИТП, Кумбс-позитивные иммунные гемолитические анемии, некоторых видах нейтропении). Красная пульпа также служит резервуаром для элементов крови, особенно лейкоцитов и тромбоцитов. В селезенке происходит фильтрационный отбор эритроцитов, при котором удаляются клетки, имеющие специфические включения: тельца Гейнца (преципитаты нерастворимого глобина), тельца Хауэлла–Жолли (ядерные фрагменты) и целые ядра; таким образом, после спленэктомии и при функциональном гипоспленизме в периферической крови появляются эритроциты, содержащие данные включения. В норме кроветворение в красной пульпе происходит только в течение эмбрионального периода. Однако данный тип кроветворения может наблюдаться при поражении костного мозга (фиброз или опухоль), которое сопровождается циркуляцией гемопоэтических стволовых клеток и восстановлением популяции стволовых клеток селезенки у взрослого человека (см. гл. «Миелофиброз»; «Миелодиспластический синдром»).

СПЛЕНОМЕГАЛИЯ

Спленомегалия почти всегда является следствием других заболеваний. Для данной патологии существует множество причин и возможных способов их классификации (табл. 148–1). В странах умеренного климата наиболее распространенными причинами являются

- миелопролиферативные заболевания;
- лимфопролиферативные заболевания;
- болезни накопления (болезнь Гоше);
- заболевания соединительной ткани.

В тропических странах наиболее распространенными причинами являются

- инфекционные заболевания (малария, калазар).

Причиной выраженной спленомегалии (селезенка пальпируется на 8 см ниже реберной дуги) чаще всего являются следующие заболевания: хронический лимфолейкоз, неходж-
Глава 148. Заболевания селезенки

1711

кинские лимфомы, хронический миелолейкоз, истинная полицитемия, миелофиброз с миелоидной метаплазией, волосатоклеточный лейкоз.

Спленомегалия может сопровождаться цитопеническим синдромом (см. гл. «Гиперспленизм»).

Анамнез. Большинство существующих симптомов являются результатом основного заболевания. Тем не менее спленомегалия сама по себе может вызывать раннее чувство насыщения пищей, что обусловлено давлением увеличенной селезенки на желудок. Также возможно чувство переполнения и боли в левом верхнем квадранте живота. Сильные боли могут быть признаком инфаркта селезенки. Рецидивирующие инфекции, симптомы анемии или кровотечения свидетельствуют о развитии цитопении и возможного гиперспленизма.

Физикальное обследование. Чувствительность пальпации и перкуссии при выявлении увеличенных размеров селезенки в соответствии с данными УЗИ составляет 60–70% и 60–80% соответственно. У худых людей селезенка может пальпироваться в 3% случаев. Кроме того, образование, пальпируемое в левом верхнем квадранте живота, может быть обусловлено другой причиной, не связанной с увеличением селезенки.

Диагностика. При сомнительных данных физикального обследования может потребоваться инструментальное подтверждение спленомегалии. В таком случае методом выбора является ультразвуковое исследование в связи с его точностью и низкой стоимостью. КТ и МРТ позволяют более детально визуализировать селезенку. МРТ особенно эффективно при диагностике тромбоза портальной или селезеночной вены. Высокой точностью отличается сцинтиграфия, которая позволяет идентифицировать наличие добавочных

Табл. 148–1. Типичные причины спленомегалии

<table>
<thead>
<tr>
<th>ТИП</th>
<th>ПРИМЕРЫ</th>
</tr>
</thead>
</table>
| Застой крови | Цирроз печени
Внешняя компрессия или тромбоз портальной или селезеночной вены
Некоторые пороки развития сосудов портальной системы |
| Инфекционные и воспалительные заболевания | Острые инфекции (инфекционный мононуклеоз, вирусный гепатит, подострый бактериальный эндокардит, пневмококк)
Хронические инфекции (милиарный туберкулез, малярия, бруцеллез, кала-азар, сифилис)
Саркоидоз
Вторичный амилоидоз
Заболевания соединительной ткани (СКВ, синдром Фети) |
| Миелопролиферативные и лимфопролиферативные заболевания | Миелофибrosis с миелоидной метаплазией
Лимфомы
Лейкозы, особенно хронический лимфолейкоз, лейкозы из крупных гранулярных лимфоцитов, хронический миелолейкоз
Истинная полицитемия
Первичная тромбоцитемия |
| Хронический гемолиз | Анонами формы эритроцитов (наследственный сфероцитоз, наследственный элипсоцитоз)
Гемоглобинопатии, в т.ч. талассемии, различные варианты серповидно-клеточной анемии (к примеру, болезнь гемоглобина S-C), врожденные гемолитические анемии с тельцами Гейнца
Эритроцитарные ферментопатии (к примеру, дефицит пируваткиназы) |
| Болезни накопления | Липидные (болезнь Гоше, Нимана – Пика, Хенда – Шоулера – Кричесена, Вольмана)
Нелипидные (болезнь Леттерера – Сиве) |
| Структурные нарушения | Кисты селезенки, обычно обусловленные разрушением ранее существовавшей внутриселезеночной гематомы |

*В порядке, соответствующем клинической распространенности.
†Как правило, имеет врожденный характер

Адаптировано Уильямс В. Дж. и др.: Гематология. Нью Йорк, МакГроу-Хилл Бук Компани, 1976
элементов селезенки, однако этот метод является дорогим и сложным для выполнения.

Специфические причины спленомегалии, предполагаемые на этапе клинического обследования, должны быть подтверждены соответствующими диагностическими методами (см. в соответствующих разделах руководства). Если предполагаемая причина отсутствует, в первую очередь необходимо исключить скрыто протекающие инфекции, поскольку раннее начало лечения влияет на исход инфекционного заболевания в большей степени, чем на исход других заболеваний, ассоциированных со спленомегалией. В зонах широкого географического распространения инфекции или при наличии у пациента признаков заболевания обследование должно проводиться особенно тщательно. Необходимо выполнить общий анализ крови, посев крови на стерильность, исследование костного мозга. Если клинические признаки заболевания (кроме симптомов, напрямую связанных со спленомегалией) и факторы риска инфекции отсутствуют, рекомендации в отношении спектра проводимых исследований являются спорными. Вероятно, они должны включать общий анализ крови, мазок периферической крови, оценку функциональных печеночных проб, КТ брюшной полости. При подозрении на лимфому проводится флюоресцентная микроскопия.

Симптомы и признаки
Спленомегалия – важный клинический синдром; размер селезенки коррелирует со степенью анемии. Считается, что увеличение размера селезенки с ее смещением на 2 см ниже края реберной дуги соответствует снижению содержания Hb на 1 г/дл. Другие клинические признаки, как правило, обусловлены основным заболеванием.

Диагноз
Наличие гиперспленизма необходимо предполагать у пациентов со спленомегалией, анемическим или цитопеническим синдромом. Обследование аналогично обследованию при спленомегалии.

При отсутствии других одновременно существующих механизмов, осложняющих течение заболевания, анемии и другие цитопении не достигают тяжелой степени и протекают бессимптомно (как правило, количество тромбоцитов 50 000–100 000/мкл; количество лейкоцитов 2500–4000/мкл с нормальной лейкоцитарной формулой). Морфология эритроцитов обычно в пределах нормы, за исключением единичных сфероцитов. Типичен ретикулоцитоз.

Лечение
■ Возможна абляция селезенки (путем спленэктомии или лучевой терапии).
■ Вакцинация пациентов после спленэктомии.
Лечение напрямую зависит от основного заболевания. Тем не менее если гиперспленизм является единственным серьезным проявлением заболевания (к примеру, при болезни Гоше), может быть показано проведение абляции селезенки путем спленэктомии или лучевой терапии (табл. 148–2). Поскольку интактная селезенка защищает от тяжелых инфекций, вызванных инкапсулированными бактериями, спленэктомия следует избегать, если это возможно, а пациентов, подвергнутых спленэктомии, необходимо вакцинировать против инфекций, вызванных Streptococcus pneumoniae, Neisseria meningitidis и Haemophilus influenzae. После спленэктомии пациенты особенно чувствительны к развитию тяжелого сепсиса, часто они вынуждены ежедневно принимать с профилактической целью антибиотики, такие как пенициллин или эритромицин. При лихорадке данные пациенты должны получать эмпирическую антибактериальную терапию.

Таблица 148–2. Показания для спленэктомии и лучевой терапии при гиперспленизме

<table>
<thead>
<tr>
<th>ПОКАЗАНИЯ</th>
<th>ПРИМЕРЫ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гемолитические синдромы, при которых укороченная выживаемость эритроцитов еще больше сокращается из-за спленомегалии</td>
<td>Наследственный сфероцитоз, Талассемии</td>
</tr>
<tr>
<td>Тяжелая панцитопения, ассоциированная с массивной спленомегалией</td>
<td>Болезни накопления липидов*</td>
</tr>
<tr>
<td>Сосудистый инсульт с поражением селезенки</td>
<td>Рецидивирующие инфаркты</td>
</tr>
<tr>
<td>Механическое повреждение других органов брюшной полости</td>
<td>Синдром раннего насыщения пищей</td>
</tr>
<tr>
<td>Интенсивное кровотечение</td>
<td>Обструкция чашечек левой почки</td>
</tr>
</tbody>
</table>

*Размеры селезенки могут достигать 30-кратного увеличения по сравнению с нормой.
филы токсичны для гельминтов в искусственных условиях, нет прямых данных, указывающих на то, что эозинофилы в естественных условиях уничтожают паразитов. Эозинофилы способны модулировать реакции гиперчувствительности немедленного типа с помощью распада или инактивации медиаторов, высвобождаемых тучными клетками, таких как гистамин, лейкотриены (которые способны вызывать вазоконстрикцию и бронхоспазм), лизофосфолипиды и гепарин. Длительная эозинофилия может приводить к повреждению тканей посредством механизмов, которые до настоящего времени полностью не ясны. Эозинофильные гранулы содержат главный основной протеин и эозинофильный катионный протеин, которые являются токсичными для ряда паразитов и клеток млекопитающих. Эти протеины связывают гепарин и нейтрализуют его антикоагулянтную активность. Эозинофильный нейротоксин может вызывать тяжелое повреждение миелиновой оболочки нейронов. Эозинофильная пероксидаза, которая значительно отличается от пероксидазы других гранулоцитов, генерирует окислительные радикалы в присутствии перекиси водорода и галоидных соединений. Кристаллы Шарко–Лейдена, состоящие в основном из фосфолипазы В, локализуются в мокроте, тканях и кале при заболеваниях, сопровождающих эозинофилией (например, астма, эозинофильная пневмония). Нормальное содержание эозинофилов в периферической крови менее 350/мкл, с суточными колебаниями, обратно пропорциональными уровню плазменного кортизола; самый высокий уровень наблюдается ночью, самый низкий – утром. Количество эозинофилов в крови может снижаться при стрессе, применении β-блокаторов или кортикоидных, сопровождающих эозинофилией (например, астма, эозинофильная пневмония). Эозинофилия сама по себе не вызывает никаких симптомов. Однако иногда у больных с очень тяжелой эозинофилией (количество эозинофилов >100 000/мкл), обычно при эозинофильной лейкемии, развиваются осложнения гиперлейкоцитозов.

Эозинофилия имеет характеристики иммунного ответа: агент, такой как Trichinella spiralis, способствует развитию первичной реакции с относительно небольшим уровнем эозинофилов, в то время как повторное появление агента приводит к приросту уровня эозинофилов или вторичному эозинофильному ответу. Некоторые структуры, высвобождаемые тучными клетками, индуцируют IgE-опосредованную продукцию эозинофилов, такие как эозинофильный хемотаксический фактор анафилаксии, лейкотриен В4, комплементный комплекс (C5–C6–C7) и гистамин (выше обычной концентрации). Эозинофилия сама по себе не вызывает никаких симптомов. Однако иногда у больных с очень тяжелой эозинофилией (количество эозинофилов >100 000/мкл), обычно при эозинофильной лейкемии, развиваются осложнения гиперлейкоцитозов.

Экология
Эозинофилия может быть первичной (т.е. клональная пролиферация эозинофилов, связанная с гематологическими расстройствами, такими как лейкозы и миелопролиферативные заболевания), вторичной, т.е. связанной с множественными негематологическими заболеваниями (табл. 149–1), или идиопатической (если другие причины не могут быть определены).
<table>
<thead>
<tr>
<th>Причины или связанные заболевания</th>
<th>Примеры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аллергические или атопические заболевания</td>
<td>Астма, Аллергический бронхолёгочный аспергиллез, Аллергический ринит, Атопический дерматит, Реакции на лекарства (например, к антибиотикам или НПВП), Экзема, Эпидемический отек Квинке с эозинофилией, Аллергия на белки молока, Профессиональное заболевание легких, Крапивница</td>
</tr>
<tr>
<td>Заболевания соединительной ткани, васкулиты или гранулематозы (особенно с участием легких)</td>
<td>Синдром Дрессера, Эозинофильный фасцит, Идиопатический эозинофильный синовит, Воспалительные заболевания кишечника, Увеличенный периартериит, Прогрессирующий системный склероз (склеродермия), Рефрактерная анемия, Саркоидоз, Синдром Щегрена, Системная красная волчанка</td>
</tr>
<tr>
<td>Болезни эндокринной системы</td>
<td>Гипофункция надпочечников</td>
</tr>
<tr>
<td>Иммунные нарушения (часто с экземой)</td>
<td>Синдром врожденного иммунодефицита (например, дефицит IgA, гипер-IgE синдром, синдром Вискотта–Ольдрича), Реакция трансплантат против хозяина</td>
</tr>
<tr>
<td>Мielопролиферативные заболевания</td>
<td>Острый или хронический эозинофильный лейкоз, Острый лимфобластный лейкоз (некоторые виды), Хронический миелолейкоз, Гиперэозинофильный синдром</td>
</tr>
<tr>
<td>Непаразитарные инфекции</td>
<td>Аспергиллез, Бруцеллез, Болезнь косачьих царапин, Хламидийная пневмония младенчества, Кокцидиоидомикозом (острый), Инфекционный миелоит, Инфекционный мононуклеоз, Микобактериальные болезни, Скарлатина</td>
</tr>
<tr>
<td>Паразитарные инфекции</td>
<td>Аскаридоз, Клонорхоз, Цистицеркоз (вызванный Taenia solium), Эхинококкоз, Фасциолез, Филяриатоз, Анкилостомоз, Парагонимиоз, Пневмощистоз infection, Шистосомоз, Стронгилоидоз, Трихинеллез, Трихоцефалез, Висцеральная личинка</td>
</tr>
<tr>
<td>Кожные заболевания</td>
<td>Герпетиформный дерматит, Эксфолиативный дерматит, Пузьрчатка, Псориаз</td>
</tr>
<tr>
<td>Синдромы легочной инфильтрации с эозинофилией</td>
<td>Аллергический бронхолёгочный аспергиллез, Хроническая эозинофильная пневмония, Синдром Чарга–Стросса, Простая легочная эозинофилия (синдром Леффлера), Тропическая легочная эозинофилия</td>
</tr>
</tbody>
</table>
В США наиболее частыми причинами эозинофилии являются:
- аллергические и атопические болезни (обычно респираторные и кожные).
- Среди других распространенных причин выделяют:
 - инфекции (особенно паразитарные);
 - опухоли (гематологические или солидные, доброкачественные или злокачественные).
- Почти все паразитарные инвазии тканей могут вызывать эозинофилию, но поражение простейшими и неинвазивными многоклеточными, как правило, не провоцируют эозинофилию.
- Среди опухолей лимфома Ходжкина может вызывать существенную эозинофилию, в то время как для неходжкинской лимфомы, хронического миелолейкоза и острого лимфобластного лейкоза это нехарактерно. Рак яичников является наиболее частой солидной опухолью, являющейся причиной эозинофилии.
- Легочный эозинофильный инфильтрат включает в себя большой спектр клинических проявлений, характеризующихся периферической эозинофилией и эозинофильными легочными инфильтратами с неизвестной этиологией.
- Больные с эозинофильной реакцией на лекарственные препараты могут не иметь каких-либо клинических симптомов или иметь проявления различных синдромов, включая интерстициальный нефрит, сывороточную болезнь, холестатическую желтуху, гиперчувствительные васкулиты и иммунобластную лимфаденопатию.

Симптомы (сильные мышечные боли, тендоциновит, отек мышц, кожная сыпь) продолжались от недели до месяцев, имели место случаи с летальным исходом.

Оценка
Список возможных причин и связанных с ними расстройств очень велик. В первую очередь должны быть рассмотрены общие причины (например, аллергические, инфекционные, опухолевые заболевания), но даже их зачастую трудно определить. Необходим тщательный сбор анамнеза и проведение физического обследования.

Анамнез. Полезно задавать вопросы, касающиеся следующего:
- путешествия (возможность заражения паразитарными инфекциями);
- аллергия;
- употребляемые медикаменты;
- употребление трав и диетических добавок, имеющих в своем составе L-триптофан;
- системные симптомы (например, температура, потеря веса, миалгии, боли в суставах, сыпь, увеличение лимфатических узлов).

Системные симптомы указывают на то, что маловероятны аллергические или лекарственные причины возникновения заболевания. Требуется проведение подробной оценки инфекционных заболеваний, новообразований, соединительной ткани и других системных расстройств. Неотъемлемой частью анамнеза является изучение семейных случаев патологических изменений крови (например, нарушение плазматических клеток) и полный обзор систем, в т.ч. симптомов аллергических, легочных, сердечных, желудочно-кишечных и неврологических дисфункций.

<table>
<thead>
<tr>
<th>ПРИЧИНЫ ИЛИ СВЯЗАННЫЕ ЗАБОЛЕВАНИЯ</th>
<th>ПРИМЕРЫ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опухоли</td>
<td>Карциномы и саркомы легких, поджелудочной железы, толстой кишки, шейки матки или яичников</td>
</tr>
<tr>
<td></td>
<td>Лимфома Ходжкина</td>
</tr>
<tr>
<td></td>
<td>Иммунобластная лимфаденопатия</td>
</tr>
<tr>
<td></td>
<td>Неходжкинские лимфомы</td>
</tr>
<tr>
<td>Прочее</td>
<td>Цирроз</td>
</tr>
<tr>
<td></td>
<td>Семейная эозинофилия</td>
</tr>
<tr>
<td></td>
<td>Перitoneальный диализ</td>
</tr>
<tr>
<td></td>
<td>Радиационная терапия</td>
</tr>
<tr>
<td></td>
<td>Использование L-триптофана</td>
</tr>
</tbody>
</table>

Примеры

<table>
<thead>
<tr>
<th>Опухоли</th>
<th>Карциномы и саркомы легких, поджелудочной железы, толстой кишки, шейки матки или яичников</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лимфома Ходжкина</td>
<td>Иммунобластная лимфаденопатия</td>
</tr>
<tr>
<td>Неходжкинские лимфомы</td>
<td>Цирроз</td>
</tr>
<tr>
<td>Семейная эозинофилия</td>
<td>Перitoneальный диализ</td>
</tr>
<tr>
<td>Радиационная терапия</td>
<td>Использование L-триптофана</td>
</tr>
</tbody>
</table>
Глава 149. Эозинофильные нарушения

Физическое обследование. Общий медицинский осмотр также должен включать обследование сердца, кожи и неврологической и легочной систем. Определенные результаты указывают на причины или связанные с ними заболевания. Примеры включают в себя сыпь (аллергические, дерматологические или васкулитные расстройства), заболевания легких (астма, легочные инфекции или синдромы легочной инфильтрации с эозинофилией) и генерализованную лимфаденопатию или спленомегалию (миелопролиферативные заболевания или рак).

Исследование. Эозинофилия, как правило, выявляется при проведении общего анализа крови. Дополнительные исследования включают в себя следующее:

• исследование кала на яйца глист и паразитов;
• другие тесты для обнаружения повреждения органов или для конкретных причин, основанные на клинических данных.

При выявлении эозинофилии при проведении общего анализа крови необходимо узнать точное количество эозинофилов.

Если клинически не подтверждается лекарственная или аллергическая причина, 3 пробы кала должны быть проверены на предмет яйцеклеток и паразитов, однако отрицательные результаты не исключают паразитарных причин (например, трихинеллез требует биопсию мышц; висцеральные мигрирующие личинки и филяриатозные инфекции требуют биопсию ткани; жидкость из двенадцатиперстной кишки может быть необходима для исключения определенных паразитов (например, стронголоидоз спр.).

Целесообразность выполнения специфических диагностических тестов определяется исходя из данных осмотра и может включать рентгенографию органов грудной клетки, анализ мочи, функциональные тесты печени и почек, серологические исследования на наличие паразитарных инфекций и заболеваний соединительной ткани. Необходимо исследование крови, если у больного наблюдаются общая лимфаденопатия, спленомегалия или системные симптомы. Повышенный уровень сывороточного витамина В12, или низкая щелочная фосфатаза лейкоцитов, или отклонения в мазке периферической крови предполагают наличие миелопролиферативного заболевания, при котором необходимо исследование аспириата и биопсии костного мозга с цитогенетическим анализом.

Лечение

Иногда кортикостероидами.

Необходимо прекратить применение препаратов, вызывающих эозинофилию. Также необходимо вылечить известные причины возникновения эозинофилии.

Если причина эозинофилии не найдена, больному угрожает появление осложнений. Тест с коротким назначением мазь доз глюкокортиккоидов продемонстрирует снижение числа эозинофилов; если эозинофилия является вторичной (например, аллергия или паразитарное заражение), и не окажет действия при онкологических заболеваниях. Проведение такого теста показано при постоянной или прогрессирующей эозинофилии и отсутствии видимой причины.

ГИПЕРЭОЗИНОФИЛЬНЫЙ СИНДРОМ
(идиопатический гиперэозинофильный синдром)

Гиперэозинофильный синдром (ГЭС) характеризуется эозинофилией периферической крови с вовлечением или дисфункцией органов, непосредственно обусловленной эозинофилией, в отсутствие паразитарных, аллергических или других причин эозинофилии. Симптомы разнообразны и зависят от того, дисфункция каких органов имеет место. Лечение начинается с преднизолона и может включать гидроксимочевину, интерферон и иматиниб.

ГЭС определяется эозинофилией периферической крови более 1500/мкл непрерывно в течение 6 и более месяцев. ГЭС раньше считался идиопатическим, а сейчас является результатом различных заболеваний, некоторые причины которых известны. Одним из ограничений традиционного определения является то, что оно не включает больных с некоторыми из тех нарушений (например, генетические дефекты), которые являются причинами ГЭС, но не удовлетворяют традиционным диагностическим критериям ГЭС по степени и продолжительности
еозинофилии. Еще одним ограничением является то, что некоторым больным с эозинофилией и повреждениями органов, которые характеризуют ГЭС, необходимо начинать лечение ранее 6 месяцев необходимых для подтверждения традиционных диагностических критериев.

ГЭС является редким заболеванием, имеет неизвестную частоту распространения и чаще всего поражает людей в возрасте от 20 до 50 лет. Только у некоторых больных с длительной эозинофилией развивается дисфункция органов, которая характеризует гиперэозинофильный синдром. Хотя затронут может быть любой орган, но чаще всего это сердце, легкие, селезенка, кожа или нервная система. Поражение легких и сердца часто определяет клинику заболевания и смертность.

Подтипы. Выделяют два крупных подтипа (табл. 149–2):
• миелопролиферативный;
• лимфопролиферативный.

Миелопролиферативный вариант часто связан с небольшой интерстициальной делечией в хромосоме 4 и FIPIL/PDGRA-связанным гибридным геном (отражающий активность тирозинкиназы, который может преобразовать гематопоэтические клетки). У больных часто наблюдается:
• спленомегалия;
• тромбоцитопения;
• анемия;
• повышенный уровень витамина B12;
• гипогранулярные или вакуолизированные эозинофилы;
• миелофиброз.

У больных этого подтипа часто развивается эндомиокардиальный фиброз и редко развивается острый миелоидный или лимфобластный лейкоз. FIPIL/PDGRA-связанный гибридный ген чаще проявляется у мужчин и может быть восприимчив к иматинибу.

Лимфопролиферативный вариант связан с клональной популяцией Т-клеток с аберрантным фенотипом. У больных часто наблюдаются:
• ангионевротический отек, кожные нарушения, или оба признака;
• гипергаммаглобулинемия (особенно IgE);
• циркулирующие иммунные комплексы (иногда с сывороточной болезнью).

Пациенты также восприимчивы к кортико стероидам, а иногда у них развивается Т-клеточная лимфома.

Другие формы ГЭС включают хронический эозинофильный лейкоз, синдром Глейча (циклическая эозинофилия и отек Квинке), семейный гиперэозинофильный синдром, отображаемый 5q 31-33, и другие специфические синдромы органов. Гиперлейкоцитоз может возникать у пациентов с эозинофилическим лейкозом и большим количеством эозинофилов (например, более 100 000 клеток/мкл). Эозинофилы могут образовывать агрегаты, которые закупоривают

<table>
<thead>
<tr>
<th>Признак</th>
<th>Миелопролиферативный вариант</th>
<th>Лимфопролиферативный вариант</th>
</tr>
</thead>
<tbody>
<tr>
<td>Генетический</td>
<td>Небольшая интерстициальная делечи в хромосоме 4 FIPIL/PDGRA-связанный гибридный ген</td>
<td>Клопная популяция T-клеток с аберрантным фенотипом</td>
</tr>
<tr>
<td>Клинические проявления и лабораторные данные</td>
<td>Анемия</td>
<td>Ангионевротический отек</td>
</tr>
<tr>
<td></td>
<td>Повышенный уровень витамина B12</td>
<td>Циркулирующие иммунные комплексы (иногда с сывороточной болезнью)</td>
</tr>
<tr>
<td></td>
<td>Эндомиокардиальный фиброз</td>
<td>Гипергаммаглобулинемия (особенно IgE)</td>
</tr>
<tr>
<td></td>
<td>Гипогранулярные или вакуолизированные эозинофилы</td>
<td>Аномалии кожи</td>
</tr>
<tr>
<td></td>
<td>Спленомегалия</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Тромбоцитопения</td>
<td></td>
</tr>
<tr>
<td>Повышенный риск будущих расстройств</td>
<td>Острый лимфобластный лейкоз</td>
<td>T-клеточная лимфома</td>
</tr>
<tr>
<td></td>
<td>Острый миелоидный лейкоз</td>
<td></td>
</tr>
<tr>
<td>Реакция на лекарства</td>
<td>Иматиниб и другие ингибиторы тирозинкиназы</td>
<td>Кортикостероиды</td>
</tr>
</tbody>
</table>
Глава 149. Эозинофильные нарушения

мелкие кровеносные сосуды, что приводит к ишемии тканей и микроинфарктам. Общие проявления включают гипоксию мозга или легких (например, энцефалопатия, одышка или дыхательная недостаточность).

Симптомы и признаки
Симптомы различаются и зависят от того, в каком органе возникло нарушение (табл. 149–3).

Иногда у больных с тяжелой формой эозинофилии (например, количеством эозинофилов >100 000/мкл) развиваются такие осложнения гиперлейкоцитоза, как проявления гипоксии мозга и легких (например, энцефалопатия, одышка или дыхательная недостаточность).

Диагностика
- Исключение вторичной эозинофилии.
- Тесты на определение поврежденного органа.
- Цитогенетическое исследование костного мозга.
- Исследование для выявления ГЭС должно быть проведено в случае, если уровень эозинофилов в периферической крови пациента >1500/мкл больше, чем в одном необъяснимом случае, особенно когда есть симптомы поражения органов. Необходимо провести исследование для исключения заболеваний, вызывающих эозинофилию. Дальнейшие исследования должны включать биохимию крови (включая ферменты печени, креатинкиназу, функции почек и тропонин), ЭКГ, эхокардиографию, исследование функции легких, а также КТ грудной клетки, живота и таза. Аспирация костного мозга и биопсия с проточной цитометрией, цитогенетика и ПЦР с обратной транскрипцией или флюоресценции в гибридизации (FISH) необходимы для выявления FIPIL/PDGFRA-связанного гибридного гена и других возможных причин эозинофилии (например, BCR-ABL аномалии, характерные для хронического миелолейкоза).

<table>
<thead>
<tr>
<th>СИСТЕМА</th>
<th>РАСПРОСТРАНЕННОСТЬ</th>
<th>ПРОЯВЛЕНИЯ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая</td>
<td>Около50%</td>
<td>Анорексия, Усталость, Лихорадка, Миалгия, Слабость, Потеря вес</td>
</tr>
<tr>
<td>Сердечно-легочная</td>
<td>Более 70%</td>
<td>Паритетальный тромб с эмболией, Рестриктивная или инфилтративная кардиомиопатия, митральная или трикуспидальная регургитация с кашлем, одышкой, сердечной недостаточностью, аритмиями, эндомиокардиальное заболевание, легочные инфаркты, плевральные выпоты</td>
</tr>
<tr>
<td>Кожная</td>
<td>Более 50%</td>
<td>Ангионевротический отек, Дерматографизм, Зуд, Сыль (в т.ч. экзема и крапивница)</td>
</tr>
<tr>
<td>Гематологическая</td>
<td>Более 50%</td>
<td>Анемия, Лимфаденопатия, Сplenomegалия, Тромбоэмболические явления, Тромбоцитопения</td>
</tr>
<tr>
<td>Неврологическая</td>
<td>Более 50%</td>
<td>Церебральная эмболия с очаговыми нарушениями, Диффузная энцефалопатия с изменением поведения и когнитивных функций и спастичностью, Периферическая нейропатия</td>
</tr>
<tr>
<td>Желудочно-кишечная</td>
<td>Более 40%</td>
<td>Спазмы в животе, Диарея, Тошнота</td>
</tr>
<tr>
<td>Иммунологическая</td>
<td>Около 40%</td>
<td>Циркулирующие иммунные комплексы при сывороточной болезни, Повышение иммуноглобулинов (особенно IgE)</td>
</tr>
</tbody>
</table>
Прогноз
К смерти обычно приводят нарушения в органах, особенно в сердце. Поражение сердца не предсказывается степенью или длительностью эозинофилии. Прогноз варьируется в зависимости от реакции на терапию. Восприимчивость к иматинибу улучшает прогноз у больных с FIPIL/PDGFRA-связанным гибридным геном. Данные терапии улучшают прогноз.

Лечение
- Кортикостероиды для гиперэозинофилии и для продолжения лечения повреждений органов.
- Иматиниб для пациентов с FIPIL/PDGFRA-связанным гибридным геном.
- Поддерживающая терапия.

Лечение включает немедленную терапию, радикальную терапию (лечение, направленное на лечение самого заболевания) и поддерживающую терапию.

Немедленная терапия. Больным с очень тяжелой эозинофилией, осложнениями гиперлейкоцитоза или при обоих случаях одновременно (как правило, у пациентов с эозинофильным лейкозом) как можно скорее должны быть назначены высокие дозы кортикостероидов (например, преднизолон 1 мг/кг или его аналог). Если количество эозинофилов сильно уменьшилось (например, ≥50%) за следующие 24 часа, то дозы кортикостероидов следует повторять ежедневно. Если нет, то нужно проводить альтернативное лечение (например, винкристин, иматиниб, лейкаферез).

Радикальная терапия. Больных с FIPIL/PDGFRA-связанным гибридным геном обычно лечат при помощи иматиниба и кортикостероидами, особенно при подозрении на нарушений в сердце. При неэффективности или плохой переносимости иматиниба может быть использован другой ингибитор тирозинкиназы (например, дазатиниб, нилотиниб, сорафениб) или испробована аллогенная трансплантация гемопоэтических стволовых клеток.

Больным без FIPIL/PDGFRA-связанного гибридного гена для определения восприимчивости к кортикостероиду (например, уменьшение количества эозинофилов) часто дают одну дозу преднизолона (60 мг или 1 мг/кг). У больных с симптомами и повреждениями в органе, такую же дозу преднизолона продолжают давать в течение 2 недель, затем снижают ее с каждым днем. Пациенты без симптомов и повреждениях органов находятся под наблюдением в течение по крайней мере 6 месяцев для контроля за возможными осложнениями. Если употребление кортикостероидов не может быть легко снижен, то могут быть использованы кортикостероидо-щадящие препараты (например, гидроксимочевина, интерферон альфа).

Поддерживающая терапия. Поддерживающая лекарственная терапия и операция могут потребоваться при симптомах нарушений сердца (например, инфилтративная кардиомиопатия, поражения клапанов сердца, сердечная недостаточность). Тромботические осложнения могут потребовать использования антитромбоцитарных препаратов (например, аспирин, клопидогрел, тиклопидин); если тромб левого желудочка присутствует или если, несмотря на использование аспирина, сохраняются транзиторные ишемические симптомы, то это свидетельствует об антикоагуляции.

150 Гистиоцитарные синдромы
Гистиоцитарные синдромы – клинически гетерогенная группа заболеваний, которые являются результатом патологической пролиферации гистиоцитов – макрофагов (антитело-процессирующих клеток) или дендритных клеток (антитело-презентирующих клеток). Классификация этих заболеваний достаточно сложна (табл. 150–1) и изменяется с течением времени в ходе эволюции знаний о биологии этих клеток.
Глава 150. Гистиоцитарные синдромы

Гистиоцитоз из клеток Лангерганса

Гистиоцитоз из клеток Лангерганса (ГКЛ) – это пролиферация дендритных мононуклеарных клеток с локальной или диффузной инфильтрацией внутренних органов. Чаше всего наблюдается у детей. Манифестация заболевания может сопровождаться образованием легочных инфильтратов, костными поражениями, сыпью, дисфункцией печени, эндокринной и кроветворной систем. Диагноз основан на результатах биопсии. К факторам, ассоциированным с плохим прогнозом, относится возраст <2 лет, диссеминированный процесс, особенно с вовлечением кроветворной системы, легких или комбинированными поражениями.

Заболевания различной биологической природы

<table>
<thead>
<tr>
<th>КАТЕГОРИЯ</th>
<th>ТИПИЧНЫЕ ЗАБОЛЕВАНИЯ*</th>
<th>ПРИМЕР ИЛИ ОПИСАНИЕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ассоциированные с дендритными клетками</td>
<td>Гистиоцитоз из клеток Лангерганса</td>
<td>Включает заболевания, ранее называемые эозинофильной гранулемой, болезнь Леттерера–Сиве, болезнь Хенда–Шюллера–Крисчена</td>
</tr>
<tr>
<td>Ассоциированные с макрофагами</td>
<td>Первичные гемофагоцитарные синдромы</td>
<td>Наследственные спорадические</td>
</tr>
<tr>
<td>Вторичные гемофагоцитарные синдромы</td>
<td>При инфекциях При онкологических заболеваниях При аутоиммунных заболеваниях</td>
<td></td>
</tr>
<tr>
<td>Болезнь Розаи–Дорфмана</td>
<td>Также носит название «синусовый гистиоцитоз», сопровождается массивной лимфаденопатией</td>
<td></td>
</tr>
</tbody>
</table>

Злокачественные заболевания

| Лейкозы | Острый моноцитарный и миеломоноцитарный лейкоз |
| Хронический миеломоноцитарный лейкоз (ХММЛ) | ХММЛ у взрослых ХММЛ у детей (юvenileй миеломоноцитарный лейкоз) |

*Другие, редкие заболевания существуют в каждой категории.

ГИСТИОЦИТОЗ ИЗ КЛЕТОК ЛАНГЕРГАНСА

Гистиоцитоз из клеток Лангерганса (ГКЛ) – это пролиферация дендритных мононуклеарных клеток с локальной или диффузной инфильтрацией внутренних органов. Чаше всего наблюдается у детей. Манифестация заболевания может сопровождаться образованием легочных инфильтратов, костными поражениями, сыпью, дисфункцией печени, эндокринной и кроветворной системы. Диагноз основан на результатах биопсии. К факторам, ассоциированным с плохим прогнозом, относится возраст <2 лет, диссеминированный процесс, особенно с вовлечением кроветворной системы, легких или комбинированными поражениями.

Симптомы и признаки

Симптомы и признаки в значительной мере могут варьировать в зависимости от органа, пораженного инфильтрацией. Существует исторически сложившееся описание данных синдромов, однако классические проявления наблюдаются лишь у небольшого числа пациентов.

Эозинофильная гранулема. Солитарная или мультифокальная эозинофильная гра-
нулема (60–80% случаев ГКЛ) наблюдается преимущественно у детей старшего возраста и молодых взрослых, обычно до 30 лет; пик заболеваемости приходится на возраст 5–10 лет. Наиболее часто возникают поражения костей, часто они сопровождаются болью, невозможностью переносить тяжести, есть тенденция к образованию припухлости (иногда с локальной гипертермией).

Болезнь Хенда–Шюллера–Крисчена. Данный синдром (15–40% случаев ГКЛ) встречается у детей в возрасте 2–5 лет, иногда у детей старшего возраста и взрослых. Для классической картины этого системного заболевания характерно вовлечение плоских костей черепа, ребер, таза, лопаток, могут наблюдаться комбинированные поражения. Реже в патологический процесс вовлекаются длинные трубчатые кости, поясничные и крестцовые позвонки; крайне редко поражаются лучезапястные и коленные суставы, кисти рук и стопы, шейные позвонки. В классических случаях у пациентов наблюдается экзофтальм, обусловленный орбитальной опухолевой массой. Реже встречается снижение остроты зрения или страбизм, обусловленные вовлечением зрительного нерва или глазодвигательных мышц. Для пожилых пациентов типична потеря зубов, вызванная апикальной и десневой инфильтрацией.

Достаточно распространенной патологией является хронический средний и наружный отит, обусловленный вовлечением сосцевидного отростка и каменистой части височной кости с частичной обструкцией слухового прохода. Несахарный диабет, последний компонент классической триады, наряду с поражением плоских костей и экзофтальмом наблюдается у 5–50% пациентов, причем значительную процентную долю составляют дети с системной патологией, вовлечением орбит и костей черепа. До 40% случаев системной патологии у детей сопровождается задержкой роста. Вследствие гипоталамической инфильтрации могут развиваться гиперпролактинемия и гипогонадизм.

Болезнь Леттерера–Сиве. Данный синдром (10% всех случаев ГКЛ) относится к системной патологии, наиболее тяжелому варианту ГКЛ. Чаще всего встречается у детей <2 лет, проявляется отрубевидным шелушением, экзематозными высыпаниями, иногда пустулозной сыпью с вовлечением волосистой части головы, слухового прохода, кожи живота и кожных складок шеи и лица. Потеря кожей защитного слоя может способствовать микробной инвазии и развитию сепсиса. Часто наблюдается истечение гноя из ушей, лимфаденопатия, гепатоспленомегалия, в тяжелых случаях — нарушение функции печени с развитием гипопротеинемии и нарушением синтеза факторов свертывания крови. Также могут наблюдаться анефессия, раздражительность, отставание в развитии, симптомы со стороны легких (кашель, тахипноэ, пневмоторакс), выраженная анемия, и ногда — нейтропения. Тромбоцитопения является неблагоприятным прогностическим фактором.

Родители часто сообщают о преждевременном прорезывании зубов, когда в действительности происходит оголение зубов и обнажение незрелого дентина. Пациенты могут выглядеть угрюмыми и неухоженными.

Диагноз

■ Биопсия. ГКЛ необходимо подозревать у пациентов (особенно молодого возраста) с легочными инфильтрами неустановленной этиологии, костными поражениями, аномалиями строения глаз или черепа, а также у детей младше 2 лет с типичной сыпью или тяжелым полиорганным поражением неизвестной этиологии.

При появлении данных симптомов часто выполняется рентгенография. Костные поражения обычно четко ограничены, имеют округлую или овальную форму, скошенный край, производят впечатление «углубления». Тем не менее в некоторых случаях данные поражения могут быть не отличимы от саркомы Юинга, остеогенной саркомы, других доброкачественных и злокачественных опухолей, остеомиелита.

Диагноз основан на результатах биопсии. Клетки Лангерганса обычно хорошо видны, за исключением старых поражений. С целью установления диагноза ГКЛ патолог идентифицирует эти клетки в соответствии с их иммуногистохимическими характеристиками, к которым относится экспрессия CD1a и S-100 на поверх-
Глава 150. Гистиоцитарные синдромы

1723

ностью клетки. Как только диагноз установлен, стадия заболевания должна быть определена путем проведения соответствующих визуальных и лабораторных исследований.

Прогноз
Хороший прогноз отмечается в том случае, если состояние пациента соответствует обеим нижеуказанным характеристикам:

■ патологический процесс ограничен кожей, лимфатическими узлами или костями;
■ возраст >2 лет.

При проведении лечения выживают почти все пациенты.

Заболеваемость и смертность повышаются при наличии мультиорганных поражений, особенно у пациентов

■ в возрасте <2 лет;
■ с вовлечением кроветворной системы, печени, легких или селезенки.

При проведении лечения общая выживаемость пациентов с мультиорганными поражениями составляет около 80%. Летальный исход более вероятен у пациентов группы риска с отсутствием ответа на начальную терапию. Заболевание часто рецидивирует. Может наблюдатьсь хроническое ремиттирующее или прогрессирующее течение, особенно у взрослых.

Лечение

■ Поддерживающая терапия.
■ В некоторых случаях заместительная гормональная терапия при гипопитуитаризме.
■ Химиотерапия при мультиорганном поражении.
■ В некоторых случаях хирургическое вмешательство или лучевая терапия (обычно при локальных костных поражениях).

Поскольку данные синдромы характеризуются редкостью и сложностью, пациенты, как правило, наблюдаются в учреждениях, имеющих опыт в лечении ГКЛ. Необходима общая поддерживающая терапия, которая может включать в себя тщательную гигиену с целью ограничения поражений ушей, кожных покровов и зубов, а также некрэктомию или резекцию пораженной ткани десен с целью ограничения поражений полости рта. Для лечения себорейного дерматита волосистой части головы можно 2 раза в неделю применять слезенсодержащий шампунь. Если это не приносит эффекта, допустимо применение коротких курсов топических кортико-стероидов на ограниченных участках кожи.

За пациентами с системной патологией ведется наблюдение с целью выявления возможной инвалидизации, обусловленной косметическими, функциональными ортопедическими и костными дефектами, а также проявлениями нейротоксичности и психологическими проблемами, при которых может потребоваться помощь психолога.

У многих пациентов необходимо проведение заместительной гормональной терапии с целью лечения несахарного диабета или других проявлений гипопитуитаризма.

Пациентам с мультиорганными поражениями показано назначение химиотерапии. Применение существующих протоколов лечения финансируется при поддержке общества гистиоцитозов. Протоколы лечения различаются в зависимости от категории риска. (См. протоколы лечения, доступные на интернет-сайте общества гистиоцитозов). Почти для всех пациентов с хорошим ответом на лечение возможно последующее прекращение терапии. Протоколы для пациентов с плохим ответом на лечение находятся в стадии разработки.

Местное хирургическое или лучевое лечение применяется при локальных костных поражениях, реже — при множественных поражениях с вовлечением нескольких костей. Легкодоступные поражения некритических локализаций могут подвергаться хирургическому выскабливанию. Хирургическое вмешательства необходимо избегать в том случае, если оно может повлечь за собой формирование значительных косметических и ортопедических деформаций или потерю функции. Мегавольтная лучевая терапия может применяться у пациентов с риском скелетных деформаций и потери зрения вследствие экзофтальма, патологических пе- реломов, коллапса позвонков и повреждения спинного мозга, а также у пациентов с тяжелым болевым синдромом. Дозы облучения при этом значительно ниже, чем при лечении злокачественных опухолей. Хирургическое и лучевое
лечения должно проводиться специалистами по лечению ГКЛ.

Пациенты с прогрессированием мультиорганных поражений на фоне стандартного лечения, как правило, отвечают на более агрессивную химиотерапию. У пациентов, не отвечающих на резервную химиотерапию, может применяться трансплантация костного мозга, экспериментальная химиотерапия, иммуносупрессивная или иммуномодулирующая терапия.

ГЕМОФАГОЦИТАРНЫЙ ЛИМФОГИСТИОЦИТОЗ

Гемофагоцитарный лимфогистиоцитоз (ГЛГ) – редкое заболевание, обусловленное иммунной дисфункцией у грудных детей и детей младшего возраста. У многих пациентов имеется фоновая иммунологическая патология, хотя в некоторых случаях она остается неустраненной. К признакам манифестации заболевания относятся лимфангицит, гепатосplenомегалия, лихорадка, неврологические отклонения. Диагноз устанавливается на основании специфических клинических признаков и результатов генетического тестирования.

Заболевание, как правило, поддается химиотерапевтическому лечению. В рефрактерных или генетически обусловленных случаях применяется трансплантация гемопоэтических стволовых клеток.

ГЛГ характеризуется следующими признаками:
- высокий уровень цитокинов (IL-1, IL-2, TNF-α; гамма-интерферона [INF]γ; растворимого IL-6, IL-10, IL-12; гранулоцит-макрофагального колониестимулирующего фактора [ГМ-КСФ]);
- неконтролируемая пролиферация и активация цитотоксических Т-клеток, естественных киллеров и макрофагов в различных тканях.

Характерны патологические изменения определенных аспектов иммунной функции, к примеру активности естественных киллеров и цитотоксических Т-клеток.

ГЛГ относится к редким заболеваниям. В основном оно поражает детей в возрасте <18 месяцев. Формы ГЛГ:
- наследственный (первичный);
- приобретенный (вторичный).

Независимо от формы генетические отклонения, клинические проявления и исходы заболевания имеют сравнительный характер. Приобретенный ГЛГ может быть ассоциирован с другими иммунными заболеваниями (лейкозы, лимфомы, СКВ, узелковый полиартериит, саркоидоз, прогрессивный системный склероз, синдром Шегрена, болезнь Кавасаки), встречается у реципиентов, перенесших трансплантацию почек или печени. Приобретенный ГЛГ может развиваться как результат других заболеваний или иммуносупрессивной терапии, применяемой для их лечения, а также вследствие инфекционных процессов.

Симптомы и признаки

К ранним признакам заболевания относятся лихорадка, гепатомегалия, спленомегалия, сыпь, лифаденопатия, неврологические отклонения (припадки, ретинальные геморрагии, атаксия, нарушение сознания или кома). Могут наблюдатьсь костные поражения. Клиническая манифестация заболевания может сопровождаться формированием у ребенка «угрюмой» мимики.

Диагноз

Специфические клинические и другие критерии.

ГЛГ необходимо подозревать у детей с редкими инфекциями неустановленного генеза и типичными отклонениями лабораторных показателей (цитопения, коагулопатия, изменения функциональных печеночных проб, высокий сывороточный уровень ферритина) или типичными симптомами и признаками данного заболевания.

Диагноз выставляется при наличии >5 следующих признаков:
- лихорадка (максимальный подъем температуры тела >38,5 °C на протяжении >7 дней);
- спленомегалия (селезенка пальпируется >3 см ниже края реберной дуги);
- цитопения с вовлечением (>2 клеточных ростков (Hb <9 г/дл, абсолютное количество нейтрофилов <100/мкл, тромбоцитов <100 000/мкл);
- гипертриглицеридемия (уровень триглицеридов >2,0 ммоль/л или превышение возрастной нормы на >3 стандартных отклонений [СО]) или гипофосфатемия
Глава 151. Миелопролиферативные заболевания

(фибриноген < 1,5 г/л или снижение возрастной нормы на >3 СО);
■ гемофагоцитоз (в биоптатах костного мозга, селезенки или лимфатических узлов);
■ снижение или отсутствие активности естественных киллеров;
■ уровень сывороточного ферритина > 500 мкг/л в сочетании с подъемом уровня растворимого IL-2 (CD25) (>2400 МЕ/мл или значительное превышение возрастной нормы).

Поскольку некоторые из этих тестов не имеют широкого применения, а ГЛГ не относится к распространенным заболеваниям, пациенты, как правило, обращаются в специализированные центры с целью верификации диагноза.

Лечение
■ Трансплантация гемопоэтических стволовых клеток и химиотерапия.

Лечение должно быть начато при наличии подозрения на данное заболевание, даже если состояние пациента не соответствует всем диагностическим критериям. Лечением, как правило, занимаются детские гематологи в специализированных центрах, имеющих опыт лечения пациентов с ГЛГ. В зависимости от наличия факторов риска, таких как отягощенный наследственный анамнез по ГЛГ, сопутствующие инфекции, значительные дефекты иммунной системы, может применяться комбинированная терапия, включающая в себя трансплантацию гемопоэтических стволовых клеток, применение дексаметазона, циклоспорина, этопозида, метотрексата.

БОЛЕЗНЬ РОЗАИ–ДОРФМАНА
(синусовый гистиоцитоз с массивной лимфаденопатией)

Болезнь Розаи–Дорфмана – редкое заболевание, характеризующееся аккумуляцией гистиоцитов и массивной лимфаденопатией, особенно в области головы и шеи.

Болезнь Розаи–Дорфмана наиболее распространена среди пациентов в возрасте <20 лет, преимущественно негроидной расы. Причины заболевания неизвестны.

Наиболее частыми симптомами являются лихорадка и массивная безболезненная лимфаденопатия шейной области. Кроме того, могут быть вовлечены лимфатические узлы других локализаций: медиастинальные, забрюшинные, подмышечные, паховые. Также встречается поражение носовой полости, слюнных желез, других областей головы и шеи, ЦНС. К другим клиническим проявлениям относятся лизис костей, узелковое поражение легких, сыпь. Костный мозг и селезенка, как правило, интактны.

Лабораторные тесты обычно выявляют лейкоцитоз, поликлональную гипергаммаглобулинемию, гипохромную или нормохромную анемию, ускорение СОЭ.

Заболевание, как правило, разрешается самостоятельно. Лечение не требуется; однако осуществлялись попытки проведения химиотерапии.

Миелопролиферативные заболевания

Миелопролиферативные заболевания характеризуются патологической пролиферацией одной или более линий гемопоэза или соединительных элементов. Они включают:
• эссенциальную тромбоцитемию;
• первичный миелофиброз;
• истинную полицитемию;
• хронический миелолейкоз.

Эссенциальная тромбоцитемия, первичный миелофиброз и истинная полицитемия – миелопролиферативные заболевания, которые характеризуются отсутствием филадельфийской хромосомы. Миелопролиферативные заболевания, особенно хронический миелолейкоз, иногда трансформируются в острый лейкоз. Гиперэозинофильный синдром и мастоцитоз некоторые
гематологии также относят к миелопролиферативным заболеваниям. Однако, по мнению большинства экспертов, они характеризуются достаточным числом особенностей, которые позволяют не включать их в эту группу.

Каждое из этих заболеваний идентифицируется на основе соответствующей преобладающей черты или локализации пролиферации (табл. 151–1). Несмотря на сходства, каждому из заболеваний обычно обусловлено пролиферацией клона полипотентных стволовых клеток, что приводит к выраженной в разной степени патологической пролиферации эритроцитов, лейкоцитов и предшественников тромбоцитов в красном костном мозге. Из этого патологического клона, однако, не образуются фибробласты костного мозга. Последние могут формироваться в результате поликлональной активации.

Аномалия тирозинкиназы JAK2, участвующей в регуляции ответа костного мозга на эритропоэтин, лежит в основе развития истинной полицитемии и значительной доли случаев эссенциальной тромбоцитемии и миелофиброза.

ТАБЛ. 151–1. КЛАССИФИКАЦИЯ МИЕЛОПРОЛИФЕРАТИВНЫХ ЗАБОЛЕВАНИЙ

<table>
<thead>
<tr>
<th>ЗАБОЛЕВАНИЕ</th>
<th>ПРЕОБЛАДАЮЩАЯ ЧЕРТА</th>
</tr>
</thead>
<tbody>
<tr>
<td>Истинная полицитемия</td>
<td>Эритроцитоз</td>
</tr>
<tr>
<td>Первичный миелофиброз (или миелосклероз)</td>
<td>Фиброз костного мозга с экстрамедуллярным гемопоэзом</td>
</tr>
<tr>
<td>Эссенциальная тромбоцитемия</td>
<td>Тромбоцитоз</td>
</tr>
<tr>
<td>Хронический миелолейкоз</td>
<td>Гранулоцитоз</td>
</tr>
</tbody>
</table>

ЭССЕНЦИАЛЬНАЯ ТРОМБОЦИТЕМИЯ

(эссенциальный тромбоцитоз; первичная тромбоцитемия)

Эссенциальный тромбоцитоз (ЭТ) характеризуется повышением уровня тромбоцитов, гиперплазией мегакариоцитов и склонностью к кровотечениям или тромбозам. Симптомы и признаки могут включать слабость, головные боли, парестезии, кровотечения, спленомегалию, эритромелалгию и ишемию пальцев. Диагноз устанавливается при уровне тромбоцитов >450 000/мкл, нормальной общей массе эритроцитов или нормальной гематокрите при достаточных запасах железа, отсутствии миелофиброза, филадельфийской хромосомы (или гибридного гена BCR-ABL), а также других заболеваний, которые могли бы вызвать тромбоцитоз. Однозначного подхода к лечению нет, один из вариантов лечения может включать аспирин. Пациенты >60 лет, а также пациенты с тромбоцитами и транзиторными ишемическими атаками в анамнезе нуждаются в цитотоксической терапии для снижения риска тромбозов. Согласно имеющимся данным, риск тромбоза не коррелирует с уровнем тромбоцитов, хотя отдельные случаи свидетельствуют об обратном.

Патофизиология

ЭТ обычно является результатом патологии клона одной полипотентной стволовой клетки. Однако у некоторых женщин, которые удовлетворяют критериям диагноза ЭТ, отмечается поликлональное поражение. Возрастное распределение ЭТ бимодальное: один пик приходится на возраст 50–70 лет, другой – на молодой возраст (у женщин).

Отмечается усиленное образование тромбоцитов. Продолжительность жизни тромбоцитов обычно остается нормальной, однако она может уменьшаться в связи с их секвестрацией в селезенке, а также у пациентов с эритромелалгией, сопровождающейся ишемией пальцев.

У пациентов пожилого возраста с атеросклерозом высокий уровень тромбоцитов может спровоцировать серьезное кровотечение или, что чаще, тромбоз. Тромбоз является основной причиной осложнений и смертности. Последние исследования указывают на то, что повышенный уровень лейкоцитов является важным независимым фактором риска тромбоза. Хотя согласно отдельным сообщениям (и следуя логике), высокий уровень тромбоцитов может повышать риск тромбоза, результаты одного исследования показали обратную зависимость между содержанием тромбоцитов и риском тромбоза. Кровотечение является более вероятным осложнением резко выраженного тромбоцитоза (т.е. >1,5 млн
Глава 151. Миелопролиферативные заболевания

Симптомы и признаки
К частым симптомам относятся:
■ слабость;
■ кровотечения;
■ подагра;
■ глазная мигрень;
■ парестезии кистей рук и стоп.

Тромбоз может вызывать симптомы в пораженном участке (например, неврологическая патология при инсульте или транзиторных ишемических атаках, боль в ногах, отек ного или и то и другое при тромбозе сосудов нижних конечностей, боль в груди и одышка при тромбозе легочной артерии). Кровотечение обычно незначительное. Примером может быть носовое кровотечение, склонность к образованию синяков или желудочно-кишечное кровотечение. Может возникать ишемия пальцев и спленомегалия (как правило, не > 3 см ниже края реберной дуги). Последняя встречается у <50% пациентов. Изредка может наблюдаться гепатомегалия. У беременных тромбоз может быть причиной привычных выкидышей.

Диагностика
■ Общий анализ крови и мазок периферической крови.
■ Цитогенетические исследования.
■ Возможно исследование костного мозга.

ЭТ следует заподозрить у тех пациентов, у которых были исключены причины реактивного тромбоцитоза. При подозрении на ЭТ необходимо выполнить общий анализ крови, исследовать мазок периферической крови, провести цитогенетические исследования, включая исследование на филадельфийскую хромосому и мутацию BCR-ABL. Некоторые авторитетные источники советуют проведение исследования костного мозга. Однако, несмотря на существование классических для ET морфологических изменений, диагностическая ценность исследования костного мозга не установлена. Уровень тромбоцитов может превышать 1 000 000/мкл, но может быть и не более 450 000/мкл. Уровень тромбоцитов может спонтанно снижаться во время беременности. В периферическом мазке могут обнаруживаться агрегаты тромбоцитов, гигантские тромбоциты и фрагменты мегакариоцитов. Для костного мозга характерна гиперплазия тромбоцитов с обилием вывобождающихся тромбоцитов. В костном мозге присутствует железо. ЭТ отличается от других миелопролиферативных заболеваний с тромбоцитозом тем, что при нём наблюдаются нормальный гематокрит, нормальный средний объем эритроцитов, нормальные показатели содержания железа, отсутствие филадельфийской хромосомы, транслокации BCR-ABL, каплевидных эритроцитов. При этом может отмечаться выраженное увеличение фиброза костного мозга (которое имеет место при идиопатическом миелофиброзе). Мутация JAK2 V617F встречается приблизительно у 50% пациентов. У небольшой доли пациентов с ET отмечаются приобретенные мутации гена рецептора тромбоцитина (c-mpl).

Прогноз
Продолжительность жизни близка к нормальной. Хотя заболевание часто сопровождается симптомами, его течение обычно доброкачественное. Серьезные осложнения, обусловленные тромбозом артерий и вен, редки, но могут представлять угрозу для жизни. Трансформация в лейкоз отмечается <2% пациентов. Эта цифра может возрастать после применения цитотоксических препаратов, особенно алкилирующих агентов.

Лечение
■ Аспирин.
■ Препараты, снижающие уровень тромбоцитов (например, гидроксимочевина, анагрелид).
■ Иногда — тромбоцифонерез.

При незначительно выраженных вазомоторных симптомах (таких как головная боль, легкая степень ишемии пальцев, эритромелалгия) и с целью снижения риска тромбоза у пациентов из группы низкого риска может быть достаточно применения аспирина в дозе 81 мг в сутки. Большинству беременных также назначается аспирин. Его использование у пациентов из
группы низкого риска допустимо, однако не подтверждено данными исследований.

Поскольку прогноз часто является благоприятным, потенциально токсичные препараты, снижающие уровень тромбоцитов, следует использовать в разумных дозах. Общеизвестными показаниями для их применения являются:
- предыдущие эпизоды тромбоза или транзиторные ишемические атаки;
- возраст > 60 лет.

Другие показания являются противоречивыми. Пациенты со значительным кровотечением и резко выраженным тромбоцитозом (пациенты из группы высокого риска) могут нуждаться в лечении для снижения концентрации тромбоцитов. Нужны ли препараты для снижения уровня тромбоцитов пациентам < 60 лет, не имеющим симптомов, неясно. К препаратам, угнетающим костный мозг, которые снижают уровень тромбоцитов, относятся анагрелид, интерферон альфа-2b и гидроксимочевина (иногда в сочетании с низкой дозой аспирина). В целом гидроксимочевина считается препаратом выбора, однако некоторые клиники предпочитают анагрелид. Поскольку гидроксимочевина и анагрелид проходят через гематоплацентарный барьер, они не используются во время беременности. При необходимости беременным может назначаться интерферон альфа-2b.

Дозировки и наблюдение обсуждаются в разделе лечения истинной полицитемии. Традиционной целью является снижение уровня тромбоцитов < 450 000/мкл без провоцирования значительных тромбоцитарных эффектов или подавления других ростков костного мозга. Эту цель, однако, необходимо пересмотреть, учитывая новые данные, которые указывают на обратную взаимосвязь между уровнем тромбоцитов и риском тромбоза.

Тромбоцитоферез используется у отдельных пациентов с серьезными кровотечениями, рецидивирующим тромбоцитозом или перед неотложными хирургическими вмешательствами для немедленного снижения концентрации тромбоцитов. Однако необходимость в этой процедуре возникает редко. В связи с длительным периодом полужизни тромбоцитов (7 дней) гидроксимочевина и анагрелид не дают мгновенного эффекта.

ТРОМБОЦИТОЗ
(вторичная тромбоцитемия)

Тромбоцитоз может возникать на фоне:
- хронического воспаления, например при ревматоидном артрите, воспалительных заболеваниях кишечника, туберкулезе, саркоидозе, гранулематозе Вегенера;
- острой инфекции;
- кровотечения;
- дефицита железа;
- гемопози;
- злокачественных новообразований (особенно ходжкинские и неходжкинские лимфомы);
- спленэктомии;
- миелопролиферативных и гематологических заболеваний (например, истиночной полицитемии, хронического миелолейкоза, сидеробластной анемии, миелодисплазии (делиция длинного плеча 5-й хромосомы), идиопатической миелодисплазии).

Кроме того, существуют семейные формы тромбоцитоза, например обусловленные мутациями гена тромбопоэтина или гена его рецептора.

Функция тромбоцитов обычно не страдает. В отличие от ЭТ вторичная тромбоцитемия не сопровождается увеличением риска тромбоза или кровотечений, кроме тех случаев, когда пациенты длительное время обездвижены или имеют выраженное поражение артерий. При вторичном тромбоцитозе уровень тромбоцитов обычно < 1 000 000/мкл. Его причина может оказаться очевидной после сбора анамнеза и проведения объективного осмотра (возможно, в сочетании с подтверждающими диагноз исследованиями). Общий анализ крови может помочь заподозрить дефицит железа или гемолиз. Если причина остается неясной, следует рассмотреть необходимость обследования на предмет миелопролиферативного заболевания.

Устранение причины обычно приводит к нормализации уровня тромбоцитов.

ПЕРВИЧНЫЙ МИЕЛОФИБРОЗ
(агногенная миелоидная метаплазия; миелофиброз с миелоидной метаплазией)

Первичный миелофиброз (ПМ) – это хроническое, обычно идиопатическое заболевание, которое харак-
теризуется фиброзом костного мозга, спленомегалией и анемией с незрелыми или каплевидными эритроцитами. Для диагностики необходимо исследование костного мозга и исключение других патологических состояний, которые могут вызвать миелофиброз (вторичный миелофиброз). Лечение, как правило, поддерживаете.

Патофизиология

Миелофиброз – это чрезмерное образование соединительной ткани в костном мозге с потерей кроветворных элементов и последующим значительным усилением внекостномозгового кроветворения (преимущественно в печени и селезенке, что сопровождается выраженным увеличением их размеров). Миелофиброз может быть первичным или вторичным в результате гематологических, злокачественных и доброкачественных заболеваний (табл. 151–2).

ПМ встречается чаще вторичного и развивается в результате злокачественного перерождения полипотентных стволовых клеток костного мозга. Эти клетки стимулируют выработку чрезмерного количества коллагена фибробластами костного мозга (которые не вовлечены в процесс злокачественного перерождения). Наиболее часто ПМ встречается в возрасте от 50 до 70 лет.

При ПМ в кровь высвобождается множество ядерсодержащих эритроцитов (нормобластов) и гранулоцитов (лейкоэритробластов). Концентрация ЛДГ в плазме часто повышена. В конечном итоге развивается недостаточность костного мозга с последующим развитием анемии и тромбоцитопении. Быстро прогрессирующий, не поддающийся лечению химиопрепаратами острый лейкоэоз развивается приблизительно у 10% пациентов.

Злокачественный или острый миелофиброз является редким вариантом. Он характеризуется более быстро прогрессирующим течением и может в действительности быть истинным мегакариоцитарным лейкоэозом.

Признаки и симптомы

У многих пациентов миелофиброз протекает бессимтомно. У некоторых отмечаются симптомы анемии, спленомегалии или (на поздних стадиях) общее недомогание, потеря веса, лихорадка, инфаркты селезенки. У значительного числа пациентов развивается гепатомегалия. Увеличение лимфатических узлов встречается редко.

Диагностика

■ Общий анализ крови и мазок периферической крови.
■ Исследование костного мозга.

Заподозрить ПМ можно у пациентов со спленомегалией, инфарктами селезенки или необъяснимым повышением концентрации ЛДГ. При подозрении на данное заболевание необходимо выполнить общий анализ крови и исследовать форменные элементы в мазке периферической крови, а также провести исследование костного мозга, включая цитогенетический анализ. При выявлении миелофиброза в образце костного мозга (увеличение содержание коллагена и фибробластов, выявленное при окрашивании ретикулина, остеосклероз) с помощью соответствующих клинических и лабораторных методов необходимо исключить другие заболевания, сопровождающиеся миелофиброзом (табл. 151–2).

Анемия является характерным проявлением заболевания. Со временем ее выраженность

<table>
<thead>
<tr>
<th>ТАБЛ. 151–2. ПАТОЛОГИЧЕСКИЕ СОСТОЯНИЯ, СОПРОВОЖДАЮЩИЕСЯ МИЕЛОФИБРОЗОМ</th>
<th>СОСТОЯНИЕ</th>
<th>ПРИМЕР</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рак</td>
<td>Рак с метастазами в костный мозг Лимфома Ходжкина Лейкозы (в частности, хронический миелолейкоз и волосатоклеточный лейкоз) Множественная миелома Неходжкинские лимфомы Истиная полицитемия (у 15–30% пациентов в фазе истощения)</td>
<td>Остеомеиял Туберкулез</td>
</tr>
<tr>
<td>Периневральная гипертензия</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Токсико-</td>
<td>Бензол Тория диоксид Рентгеновское или гамма-облучение</td>
<td></td>
</tr>
<tr>
<td>Аутокринные заболевания (редко)</td>
<td>СКВ Системный склероз</td>
<td></td>
</tr>
</tbody>
</table>
Раздел 12. Гематология и онкология
обычно нарастает. Морфология клеток крови может быть разнообразной. Эритроциты имеют разную форму. Могут отмечаться ретикулоцитоз и полихромазия. Каплевидные эритроциты (дакриоциты) являются характерной особенностью. В крови также обычно встречаются ядроодержащие эритроциты и предшественники нейтрофилов. Уровень лейкоцитов обычно повышен, но при этом может сильно варьировать. Низкое содержание лейкоцитов обычно является неблагоприятным прогностическим фактором. Нейтрофилы, как правило, незрелые. Миелобласты могут встречаться даже в отсутствие острого лейкоза. Вначале уровень тромбоцитов может быть высоким, нормальным или низким, однако по мере прогрессирования заболевания начинает преобладать тромбоцитопения.

В диагностически сложных случаях можно проанализировать содержание CD34+ клеток в образце периферической крови. У пациентов с ПМ их гораздо больше, чем у здоровых людей. При попытке аспирации костного мозга материал обычно получить не удается. Поскольку для установки диагноза необходимо гистологическое подтверждение фиброза, т.к. последний может быть выражен неравномерно, трепанобиопсию следует выполнить в другом участке, если первый образец ткани не позволяет установить диагноз.

Прогноз
Медиана продолжительности жизни составляет 5 лет с момента начала заболевания. Однако сроки могут значительно варьировать. У некоторых заболевание быстро прогрессирует, приводя к летальному исходу за короткий промежуток времени. У некоторых диагноз устанавливается с запозданием. Неблагоприятным прогностическим фактором являются гемоглобин <10 г/дл, переливание крови в анамнезе, лейкозитоз, лейкопения и уровень тромбоцитов <100 000/мкл. Продолжительность жизни пациентов в группе наиболее высокого риска составляет <1 года. Никакой метод лечения, за исключением аллогенной трансплантации стволовых клеток, не может обратить или контролировать патологический процесс, лежащий в основе заболевания.

Лечение
■ Симптоматическая терапия.
■ В некоторых случаях – аллогенная трансплантация стволовых клеток.
Лечение направлено на облегчение симптомов и осложнений. В палиативных целях используются андрогены, химиотерапия, эмболизация селезенки и лучевая терапия. У пациентов с низкой для данного уровня гемоглобина концентрацией эритропоэтина введение последнего может повысить гемоглобин до достаточного уровня. В остальных случаях может потребоваться переливание эритропоцитарной массы. У более молодых пациентов на поздних стадиях заболевания следует рассмотреть возможность аллогенной трансплантации стволовых клеток. Есть примеры успешного использования аллогенной трансплантации стволовых клеток без аблации костного мозга даже у пациентов более старшего возраста, однако обычно она проводится у пациентов <65 лет.

Ингибиторы JAK-каскада, судя по всему, могут в значительной степени корректировать спленомегалию и патологические изменения клеток периферической крови. Эти препараты находятся на ранних этапах разработки.

ИСТИННАЯ ПОЛИЦИТЕМИЯ
(первичная полицитемия)
Истинная полицитемия (ИП) – это идиопатическое хроническое миелопролиферативное заболевание, которое характеризуется увеличением общей массы эритроцитов, что проявляется увеличением гемоглобина. Заболевание сопровождается увеличением риска тромбоза и в редких случаях острого лейкоза и миелофбробоза. Также может развиваться гепатоспленомегалия. Диагноз устанавливается на основании общего анализа крови, тестирования на наличие мутаций гена JAK2 и клинических критериев. Лечение включает использование низких доз аспирина у всех пациентов и миелосупрессивных препаратов у пациентов в группе высокого риска. Кровопускание раньше было стандартом лечения, но сейчас его роль противоречива.

ИП – это наиболее распространенное миелопролиферативное заболевание. Заболеваемость им в США составляет 1,9/100 000, при
этом риск увеличивается с возрастом. ИП несколько чаще возникает у мужчин. Средний возраст на момент установки диагноза составляет 60 лет. У детей ИП встречается очень редко.

Патофизиология

При ИП отмечается усиленная пролиферация всех клеточных ростков, т.е. предшественников эритроцитов, лейкоцитов и тромбоцитов. В связи с этим ИП иногда называют панмиелизом из-за увеличения содержания представителей всех 3 клеточных линий периферической крови. Усиленная продукция одного эритроцитарного ростка называется эритроцитозом. Изолированный тромбоцитоз может наблюдаться при ИП, однако чаще он возникает по другим причинам (вторичный эритроцитоз). При ИП выработка эритроцитов происходит независимо от уровня эритропоэтина.

Внекостномозговое кроветворение может происходить в селезенке, печени и других органах, которые могут служить местом образования клеток крови. Оборот клеток периферической крови возрастает. В конечном итоге заболевание может перейти в фазу истощения, проявления которой неотличимы от первичного миелофиброза.

Осложнения. При ИП возрастает объем циркулирующей крови и увеличивается ее вязкость. Пациенты склонны к развитию тромбоза. Тромбоз может возникать в большинстве сосудов, приводя к инсульту, транзиторным ишемическим атакам, тромбозу глубоких вен, инфаркту миокарда, закупорке артерий и вен сетчатки, а также покраснению лица и расширению вен сетчатки.

Генетические факторы. Клональный гемопоэз является отличительной чертой ИП. Это свидетельствует о том, что причиной пролиферации является мутация стволовых кроветворных клеток. Мутация JAK2 V617F (или одна из нескольких других более редких мутаций гена JAK2) обнаруживается практически у всех пациентов с ИП. Однако практически с полной уверенностью можно утверждать, что существуют и другие мутации, лежащие в основе заболевания. Они поддерживают JAK2 белок в состоянии постоянной активности, что приводит к избыточной пролиферации клеток независимо от концентрации эритропоэтина.

Признаки и симптомы

ИП часто протекает бессимптомно. Иногда увеличение числа циркулирующих эритроцитов и повышение вязкости сопровождаются слабостью, дурнотой, нарушениями зрения, усталостью и одышкой. Частым симптомом является зуд, особенно после душа. Может отмечаться покраснение лица и расширение вен сетчатки, а также покраснение и болезненность ладоней и подошв, иногда в сочетании с ишемией пальцев (эритромелалгия). Часто наблюдается гепатомегалия, у 75% пациентов встречается спленомегалия (иногда резко выраженная).

Тромбоз может вызывать симптомы в пораженном участке (например, неврологическая патология при инсульте или транзиторных ишемических атаках, боль в ногах, отек ног или и то и другое при тромбозе сосудов нижних конечностей, односторонняя потеря зрения при тромбозе сосудов сетчатки). Кровотечения отмечаются у 10% пациентов. Ускоренный метаболизм может вызывать субфебрильную температуру и приводить к потере веса, что указывает на переход заболевания в фазу истощения. Последняя клинически неотличима от первичного миелофиброза.
Диагностика

- Общий анализ крови.
- Тестирование на мутации гена JAK2.
- В некоторых случаях – исследование костного мозга и определение плазменной концентрации эритропоэтина.
- Применение критериев ВОЗ.

Подозрение на ИП часто возникает уже на этапе общего анализа крови (уровень гемоглобина >18,5 г/дл у мужчин или >16,5 г/дл у женщин), однако оно также должно возникать при наличии соответствующих симптомов, в частности синдрома Бадда–Киари (стоит, однако, отметить, что у некоторых пациентов синдром Бадда–Киари развивается до повышения гематокрита). Нейтрофильный лейкоцитоз и тромбоцитоз являются частыми, но не обязательными проявлениями. Пациенты с изолированным увеличением уровня гемоглобина или эритроцитозом также могут иметь ИП, однако в таких случаях в первую очередь следует исключить вторичный эритроцитоз, который является более частой причиной изолированного повышения концентрации гемоглобина. ИП также можно заподозрить у некоторых пациентов с нормальным уровнем гемоглобина, но с микроцитозом и признаками дефицита железа. Эта комбинация признаков может возникать при гемопозе, протекающем на фоне ограниченных запасов железа, что является отличительной чертой некоторых случаев ИП.

ВОЗ были разработаны новые критерии диагностики (табл. 151–3). Таким образом, пациенты с подозрением на ИП обычно должны быть протестированы на наличие мутации гена JAK2. Исследование образца костного мозга не всегда обязательно.

В тех случаях, когда оно проводится, в костном мозге обычно обращают на себя внимание панмиелоз, большая величина и скученность мегакариоцитов. В некоторых случаях обнаруживаются ретикулиновые волокна. Однако никакие изменения костного мозга не позволяют с абсолютной уверенностью отличить ИП от других патологических состояний (например, врожденной семейной полицитемии), сопровождающихся эритроцитозом.

Концентрация эритропоэтина в плазме у пациентов с ИП обычно низкая или находится у нижней границы нормы. Повышенная концентрация указывает на вторичную природу эритроцитоза.

В некоторых случаях проводится исследование на эндогенное формирование колоний эритроидных клеток в пробирке (предшественники эритроцитов, взятые из периферической крови или костного мозга пациентов с ИП, в отличие от таковых у здоровых людей могут формировать

| ТАБЛ. 151–3. ДИАГНОСТИЧЕСКИЕ КРИТЕРИИ ИСТИННОЙ ПОЛИЦИТЕМИИ ВОЗ 1 2 |
|-------------|-------------------|
| **УРОВЕНЬ** | **СПЕЦИФИКА** |
| Основные критерии | Признаки увеличения общей массы циркулирующих эритроцитов, в частности наличие ≥1 из следующих критериев: гемоглобин >18,5 г/дл у мужчин или >16,5 г/дл у женщин; гемоглобин или гематокрит >99 перцентиля полвозрастной нормы для конкретного метода определения и высоты над уровнем моря; гемоглобин >17 г/дл у мужчин или 15 г/дл у женщин при зарегистрированном или стойком повышении как минимум на 2 г/дл по сравнению с исходным уровнем для данного пациента без учета коррекции железодефицита; увеличение общей массы циркулирующих эритроцитов более чем на 25% по сравнению со средней нормальной расчетной величиной. Наличие мутации JAK2 617VF или другой функционально сходной мутации (например, мутации 12 экзона JAK2) |
| Дополнительные критерии | Гиперплазия костного мозга по сравнению с возрастной нормой в сочетании с пролиферацией всех трех клеточных линий (пампилиоз), сопровождающейся увеличением количества гранулоцитов, эритроцитов и мегакариоцитов. Плазменная концентрация эритропоэтина ниже нижней границы нормы. Эндогенное образование колоний эритроидных клеток в пробирке |

1 Для установления диагноза необходимо наличие 2 основных и 1 дополнительного критерия или 1 основного и 2 дополнительных.
Глава 151. Миелопролиферативные заболевания

Определение совокупной массы эритроцитов при помощи эритроцитов, меченных хромом, может помочь отличить истинную и относительную полицитемию, а также отличить полицитемию от миелопролиферативных заболеваний. Однако техника выполнения этого теста сложна. Обычно он не проводится, учитывая его ограниченную доступность и тот факт, что он стандартизирован для использования только на уровне моря.

К неспецифическим отклонениям лабораторных показателей, которые могут отмечаться при ИП, относится повышение концентрации витамина B₁₂ и увеличение связывающей способности, а также гиперурикемия и гиперурикозурия (присутствуют у >30% пациентов), повышенная экспрессия гена PRV-1 в лейкоцитах, снижение экспрессии гена C-mpl (рецептора тромбопоэтина) в мегакариоцитах и тромбоцитах. Эти тесты не обязательны для установления диагноза.

Прогноз

В целом ИП сопряжена с укорочением продолжительности жизни. Медиана выживаемости всех пациентов составляет от 8 до 15 лет, хотя многие живут гораздо дольше. Самой частой причиной смерти является тромбоз. Следующими по частоте идут осложнения миелофиброза и развитие лейкоза.

Лечение

- Лечение аспирином.
- Возможное кровопускание.
- Возможная миелосупрессивная терапия.

Поскольку ИП является единственной формой эритроцитоза, при которой может быть показана миелосупрессивная терапия, нельзя переоценивать важность установления правильного диагноза. Терапия должна быть подобрана индивидуально с учетом возраста, пола, состояния здоровья, клинических проявлений и результатов гематологических исследований. Пациентов разделяют на группу высокого риска и группу низкого риска. К группе высокого риска относят пациентов >60 лет с анамнезом тромбоза или транзиторных ишемических атак, либо одного из них.

Аспирин. Аспирин (в дозе от 81 до 100 мг в сутки) снижает риск возникновения тромбоза. В связи с этим пациенты, которым проводятся только кровопускания или кровопускания в сочетании с миелосупрессивной терапией, должны получать аспирин, за исключением тех случаев, когда он противопоказан. Более высокие дозы аспирина сопряжены с недопустимо высоким риском кровотечений.

Кровопускание. Кровопускание было основой лечения пациентов в группах как высокого, так и низкого риска, поскольку эксперты считали, что оно снижает вероятность тромбоза. Обоснованность кровопусканий в настоящее время неоднозначна, поскольку новые исследования указывают на то, что уровень гемоглобина может не коррелировать с риском тромбоза. Некоторые клиницисты больше не придерживаются строгих рекомендаций в отношении кровопусканий. Тем не менее данный вопрос нуждается в дополнительном изучении. Кровопускание по-прежнему остается одной из возможных альтернатив для любого пациента. У незначительной доли пациентов с гиперемией кожи и повышенной вязкостью крови кровопускание может уменьшить выраженность симптомов. Стандартный пороговый уровень гематокрита, выше которого проводится кровопускание, составляет >45% у мужчин и >42% у женщин. Вначале через день выпускают от 300 до 500 мл крови. У пожилых и пациентов с сердечно-сосудистыми заболеваниями забирают меньший объем крови (от 200 до 300 мл 2 раза в неделю). Как только величина гематокрита становится ниже пороговой, она проверяется ежемесячно и поддерживается на одном и том же уровне путем дополнительных кровопусканий, которые выполняют по мере необходимости. Если необходимо, внутрисосудистый объем восполняется кристаллоидными или коллоидными растворами.

Миелосупрессивная терапия. Миелосупрессивная терапия показана пациентам из группы высокого риска.

Радиоактивный фосфор (³²P) долгое время использовался для лечения ИП. Эффективность лечения составляет от 80 до 90%. Ремиссия
может длиться от 6 месяцев до нескольких лет. Радиоактивный фосфор хорошо переносится и требует меньшей частоты посещений клиники после достижения контроля над заболеванием. Однако применение радиоактивного фосфора сопряжено с увеличением риска развития остrego лейкоза. Лейкоз, возникающий после такой терапии, часто резистентен к индукционной терапии и всегда неизлечим. Таким образом, применение радиоактивного фосфора требует тщательного отбора пациентов (например, препарат следует назначать только тем пациентам, чья ожидаемая продолжительность жизни в связи с сопутствующей патологией не превышает 5 лет). Назначать его стоит только в редких случаях. Многие врачи не используют его вовсе.

Гидроксимочевина подавляет фермент рибонуклеозиддифосфат–редуктазу. Она также используется для подавления активности костного мозга. Однозначных данных о способности гидроксимочевины провоцировать лейкоз нет. Однако вероятность трансформации в лейкоз существует, хотя она и мала. Гидроксимочевину назначают в начальной дозе от 500 до 1000 мг 1 раз в сутки. Пациентам еженедельно выполняют общий анализ крови. После достижения равновесного состояния интервалы между анализами крови увеличивают до 2 недель, а затем до 4 недель. Если уровень лейкоцитов падает <4000/мкл или уровень тромбоцитов падает <100 000/мкл, лечение приостанавливают, а когда упомянутые показатели приходят в норму, возобновляют в дозе на 50% меньше исходной. Дозу гидроксимочевины рационально титровать до достижения практически нормальной величины гематокрита, однако данные в пользу такого титрования отсутствуют. Нормализация уровня лейкоцитов, вероятно, более важна, но как и в предыдущем случае, эта гипотеза не была подтверждена проспективными исследованиями. Подтверждения тому, что нормализация уровня тромбоцитов необходима, нет, и некоторые врачи не увеличивают дозу гидроксимочевины до тех пор, пока число тромбоцитов остается <1,5 млн/мкл. Острая токсичность – нередкое явление. В некоторых случаях у пациентов возникает сыль, симптомы со стороны желудочно-кишечного тракта, лихорадка, изменения внешнего вида ногтей, кожные язвы. Все это может послужить поводом для прекращения приема гидроксимочевины.

Интерферон альфа-2b применяется в тех случаях, когда с помощью гидроксимочевины не удается поддерживать нужный уровень форменных элементов крови или при неэффективности последней. Стоит отметить, что пегилированный интерферон альфа-2b обычно хорошо переносится. Этот препарат воздействует на заболевание на молекулярном уровне и обладает относительно низкой токсичностью.

Алкилирующие препараты могут провоцировать развитие лейкоза, поэтому их стоит избегать.

В настоящее время в фазе клинической разработки находится несколько ингибиторов каскада JAK2. В основном они исследуются у больных с поздними стадиями миелофиброза.

Лечение осложнений. Гиперурикемию корректируют с помощью аллопуринола, на значаемого перорально в дозе 300 мг 1 раз в сутки, если повышение концентрации мочевой кислоты сопровождается симптомами или если пациенты одновременно получают миелосупрессивную терапию. Зуд можно пытаться контролировать с помощью антигистаминных препаратов, однако иногда этого трудно добиться. Миелосупрессия часто является наиболее эффективным методом. Примером потенциально эффективной терапии может быть холестерин в дозе 4 грамма перорально 3 раза в сутки, ципрогептадин в дозе 4 мг перорально 3 раза в сутки, циметедин в дозе 300 мг перорально 4 раза в сутки или пароксетин в дозе от 20 до 40 мг 1 раз в сутки.

ВТОРИЧНЫЙ ЭРИТРОЦИТОЗ (вторичная полицитемия)

Вторичный эритроцитоз – это эритроцитоз, который возникает под действием циркулирующих в крови стимуляторов эритропоза. При вторичном эритроцитозе отмечается разрастание только эритроидного ростка.

Распространенные причины вторичного эритроцитоза включают:

■ курение;
Глава 152. Лейкозы

Лейкозы представляют собой группу злокачественных новообразований лейкоцитарного ростка, поражающих костный мозг, циркулирующие лейкоциты и отдельные органы, такие как селезенку и лимфоузлы.

Лейкозы представляют собой группу злокачественных новообразований лейкоцитарного ростка, поражающих костный мозг, циркулирующие лейкоциты и отдельные органы, такие как селезенку и лимфоузлы.

■ хроническую артериальную гипоксемию;
■ опухоли (эритроцитоз, обусловленный опухолевым процессом).

Менее распространенные причины включают отдельные врожденные заболевания, такие как
■ гемоглобинопатии с повышенным сродством к O۴;
■ мутации гена рецептора эритропоэтина;
■ чувашская полицитемия (при которой мутация гена VHL влияет на каскад восприятия гипоксии);
■ альфа-мутации пролин гидроксилазы 2 и индуцируемого гипоксией фактора 2 (ИГФ-2).

Ложный эритроцитоз может наблюдаться при гемоконцентрации (например, в случае ожогов, поноса, использования диуретиков).

У курильщиков обратимый эритроцитоз возникает главным образом в результате гипоксии тканей вследствие повышения концентрации в крови карбоксидегемоглобина. Содержание эритроцитов обычно приходит в норму после прекращения курения.

У пациентов с хронической гипоксемией (концентрацией оксигемоглобина в артериальной крови ≤92%) вследствие заболеваний легких, внутрисердечных шунтов справа налево, пересадки почек, длительного нахождения на большой высоте над уровнем моря или гиповентиляции часто развивается эритроцитоз. Основу лечения составляет коррекция причины, однако кислородотерапия также может быть эффективной. Забор некоторого количества крови может снизить ее вязкость и облегчить симптомы. Поскольку повышение гематокрита ведет к ухудшению оксигенации тканей.

Эритроцитоз, обусловленный опухолевым процессом, может возникать в случае секреции эритропоэтина опухолями почек, кистами, гематомами, гемангиобластомами мозжечка или лейомиомами матки. Удаление опухоли может привести к выздоровлению.

Гемоглобинопатия с повышенным сродством к кислороду очень редка. Заподозрить этот диагноз можно при наличии положительного семейного анамнеза эритроцитоза. Он устанавливается путем измерения P50 (парциального давления кислорода, при котором гемоглобин насыщается на 50%) и, если это возможно, определения всей кривой диссоциации оксигемоглобина. Стандартный электрофорез гемоглобина может не выявить отклонений и не способен до- стоверно исключить эту причину эритроцитоза.

Обследование. При эритроцитозе определяют:
■ насыщение артериальной крови кислородом;
■ плазменную концентрацию эритропоэтина;
■ P50.

Низкая или пограничная концентрация эритропоэтина в плазме наводит на мысль об ИП. У пациентов с эритроцитозом, обусловленным гипоксемией, его концентрация либо повышена, либо противопоказана нормальная, несмотря на повышенный гематокрит. У пациентов с эритроцитозом, обусловленным опухолевым процессом, обычно отмечается повышенная концентрация эритропоэтина. У пациентов с повышенным уровнем эритропоэтина нужно выполнить визуализирующие исследования органов живота, ЦНС или и того и другого с целью выявления очага поражения в почках или других опухолей, которые могут быть источниками эритропоэтина.

P50 оценивает сродство к кислороду; нормальный результат исключает наличие гемоглобина с выраженным сродством к кислороду (семейная патология) как причины эритроцитоза.
Этиология
Риск развития лейкозов повышается при:
■ наличии в анамнезе воздействия ионизирующего излучения (например, после атомной бомбардировки в Нагасаки и Хиросиме) или химических соединений (например, бензол);
■ предшествующем лечении некоторыми цитостатическими препаратами, такими как прокарбазин, алкилирующие препараты (производными нитрозомочевины, циклофосфамидом, мелфаланом) и производными подофиллотоксина (этомозидом, тенипозидом);
■ инфицировании вирусами (например, T-лимфотропным вирусом человека 1 и 2 типа, вирусом Эпштейна–Барр);
■ наличии хромосомных транслокаций;
■ наличии в анамнезе ряда заболеваний, таких как иммунодефицитные состояния, хронические миелопролиферативные заболевания, хромосомные нарушения (например, анемия Фанкони, синдром Блума, атаксия-телангиэктазия, синдром Дауна, болезнь Брутона).

Патофизиология
Злокачественная трансформация, как правило, происходит на уровне плюрипотентных стволовых клеток, хотя иногда и в коммитированных стволовых клетках с ограниченной способностью к дифференцировке. Патологическая пролиферация, клональная экспансия и угнетение апоптоза (программируемой клеточной гибели) приводят к замещению нормальных элементов крови опухолевыми клетками.
Клинические проявления лейкоза обусловлены подавлением нормального гемопоэза и инфильтрацией органов лейкозными клетками. Опухолевые клетки продуцируют ингибиторы гемопоэза и замещают в костном мозге нормальные клеточные элементы, что приводит к угнетению гемопоэза с развитием анемии, тромбоцитопении и гранулоцитопении. Инфильтрация органов приводит к увеличению печени, селезенки, лифоузлов, иногда поражаются почки и гонады. Инфильтрация мозговых оболочек приводит к клиническим проявлениям, характерным для повышения внутричерепного давления (например, паралич черепных нервов).

Классификация
Первоначально термины «острый» и «хронический» лейкоз относились к продолжительности жизни больных, но в настоящее время лейкозы классифицируются по степени зрелости клеток.
Острые лейкозы состоят преимущественно из незрелых низкодифференцированных клеток (обычно бластных форм). Острые лейкозы делятся на подтипы в соответствии с Франко-Американо-Британской классификацией (табл. 152–1).
Хронические лейкозы состоят из более зрелых клеток. Хронические лейкозы делятся

Таблица 152–1. Франко-Американо-Британская классификация острых лейкозов (FAB-классификация)

<table>
<thead>
<tr>
<th>FAB-КЛАССИФИКАЦИЯ</th>
<th>ОПИСАНИЕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Острый лимфоидный лейкоз</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Лимфобласты с единообразными круглыми ядрами и небольшим объемом цитоплазмы</td>
</tr>
<tr>
<td>L2</td>
<td>Различная морфология лимфобластов Иногда – ядра не правильной формы, объем цитоплазмы больше, чем при L1</td>
</tr>
<tr>
<td>L3</td>
<td>Лимфобласты с мелкими частицами хроматина в ядре и глыбами или темно-глыбами цитоплазмой, содержащей вакуоли</td>
</tr>
<tr>
<td>Острый миелоидный лейкоз</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Недифференцированный миелобластный гранулы в цитоплазме отсутствуют</td>
</tr>
<tr>
<td>M2</td>
<td>Дифференцированный миелобластный Скучная грануляция может выявляться в отдельных или большинстве клеток</td>
</tr>
<tr>
<td>M3</td>
<td>Промиелоцитарный гранулы, типичная для промиелоцитов</td>
</tr>
<tr>
<td>M4</td>
<td>Мielомонобластный Смешанный миелобластный и монобластная морфология</td>
</tr>
<tr>
<td>M5</td>
<td>Монобластный Чистая монобластная морфология</td>
</tr>
<tr>
<td>M6</td>
<td>Эритробластный Морфология преимущественно незрелых эритробластов, иногда мегакариобластов</td>
</tr>
<tr>
<td>M7</td>
<td>Мегакариобластный клетки с неровными краями, может отмечаться почкование</td>
</tr>
</tbody>
</table>
Глава 152. Лейкозы

Миелодиспластические синдромы включают прогрессирующую недостаточность костного мозга с меньшим количеством бластных клеток (<30%), чем при ОМЛ; в 40–60% они превращаются в ОМЛ.

Лейкемоидная реакция представляет собой гранулоцитарный лейкоцитоз (т.е. количество лейкоцитов >30 000/мкл), продуцируемый нормальным костным мозгом в ответ на системную инфекцию или рак. Хотя она не является неоплазией, лейкемоидная реакция с очень высоким лейкоцитозом может потребовать дифференциальной диагностики с ХМЛ.

ОСТРЫЙ ЛЕЙКОЗ

Острый лейкоз развивается в результате злокачественной трансформации гемопоэтических стволовых клеток в примитивные недифференцированные клетки с аномальной продолжительностью жизни. Лимфоидные (ОЛЛ) или миелоидные (ОМЛ) клетки проявляют аномальную пролиферативную способность, вытесняя нормальную костномозговую ткань и гемопоэтические клетки и индуцируя анемию, тромбоцитопению и гранулоцитопению. Циркулируя в крови, они могут инфильтрировать различные органы и ткани, в т.ч. печень, селезенку, лимфатические узлы, ЦНС, почки и гонады.

Симптомы и признаки

Первые симптомы обычно появляются за несколько дней или недель до установки диагноза. Нарушение гемопоэза вызывает наиболее часто встречаемые проявления заболевания (анемия, инфекция, кровопотери и кровоточивость). Другие симптомы и признаки неспецифичны (бледность, слабость, лихорадка, общее недомогание, снижение массы тела, тахикардия, боли в груди) и могут быть обусловлены анемией и гиперметаболическим состоянием. Причина лихорадки обычно не ясна, хотя гранулоцитопения может приводить к развитию быстро прогрессирующих и потенциально жизнеугрожающих бактериальных инфекций. Кровоточивость обычно проявляется появлением петехий, склонностью к появлению кровоизлияний, сосудистых кровотечений, кровоточивости десен и нарушением менструального цикла. Гематурия и желудочно-кишечные кровотечения развиваются редко. Инфильтрация костного мозга и надкостницы может вызывать оссалгии и артралгии, особенно у детей. Первичное поражение ЦНС или лейкозный менингит (проявляющийся го-

Таблица 152–2. Клинические находки при установлении диагноза лейкоза

<table>
<thead>
<tr>
<th>ПАРАМЕТР</th>
<th>ОСТРЫЙ ЛИМФОИДНЫЙ</th>
<th>ОСТРЫЙ МИЕЛОИДНЫЙ</th>
<th>ХРОНИЧЕСКИЙ ЛИМФОЦИТАРНЫЙ</th>
<th>ХРОНИЧЕСКИЙ МИЕЛОЦИТАРНЫЙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возрастной пик заболеваемости</td>
<td>Детский возраст</td>
<td>Любой возраст</td>
<td>Средний либо старший возраст</td>
<td>Молодые взрослые</td>
</tr>
<tr>
<td>Уровень лейкоцитов</td>
<td>Повышен у 50%</td>
<td>Повышен у 60%</td>
<td>Повышен у 98%</td>
<td>Повышен у 100%</td>
</tr>
<tr>
<td>Нормальный или понижен у 50%</td>
<td>Нормальный или понижен у 40%</td>
<td>Нормальный или понижен у 2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лейкоцитарная формула</td>
<td>Много лимфобластов</td>
<td>Много миелобластов</td>
<td>Малые лимфоциты</td>
<td>Весь миелоидный ряд</td>
</tr>
<tr>
<td>Анемия</td>
<td>Тяжелая у >90%</td>
<td>Тяжелая у >90%</td>
<td>Умеренная у 50%</td>
<td>Умеренная у 80%</td>
</tr>
<tr>
<td>Тромбоциты</td>
<td>Снижены у >80%</td>
<td>Снижены у >90%</td>
<td>Снижены у 20–30%</td>
<td>Повышены у 60%</td>
</tr>
<tr>
<td>Лимфаденопатия</td>
<td>Часто</td>
<td>Иногда</td>
<td>Часто</td>
<td>Редко</td>
</tr>
<tr>
<td>Спленомегалия</td>
<td>У 60%</td>
<td>У 50%</td>
<td>Часто, умеренная</td>
<td>Часто, выраженная</td>
</tr>
<tr>
<td>Другие</td>
<td>При отсутствии профилактики – частое поражение ЦНС</td>
<td>ЦНС поражается редко</td>
<td>Иногда – гемолитическая анемия и гипогаммаглобулинемия</td>
<td>Низкий уровень лейкоцитарной щелочной фосфатазы</td>
</tr>
<tr>
<td></td>
<td>Иногда – тельца Ауэра в миелобластах</td>
<td>Иногда – гемолитическая анемия и гипогаммаглобулинемия</td>
<td>Филадельфийская хромосома у >90%</td>
<td></td>
</tr>
</tbody>
</table>

на лимфоцитарный (ХЛЛ) и миелоцитарный (ХМЛ – табл. 152–2).
ловными болями, тошнотой, раздражительносю, парезами черепных нервов, судорогами и отеком соска зрительного нерва) встречается редко. Экстрамедуллярная инфильтрация лейкозными клетками может вызывать лимфан
dенопатию, спленомегалию, гепатомегалию и появление лейкемидов (приподнятая над кожей сыпь без зуда). Встречается гиперплазия десен, особенно при ОМЛ.

Диагноз

- Общий анализ крови, мазок периферической крови.
- Исследование костного мозга.
- Гистохимическое исследование, цитогенетика, иммунофенотипирование, молекулярно-биологическое исследование.
- Рентгенологическое обследование.

В первую очередь выполняются общий анализ крови и исследование мазка периферической крови. Наличие панцитопении и бластных клеток в периферической крови указывает на острый лейкоз. Количество бластных клеток в мазке крови может достигать 90% от общего количества лейкоцитов. Несмотря на то что диагноз часто может быть установлен на основании мазка крови, должно быть выполнено исследование костного мозга (аспирационная или тонкоигольная биопсия). Бластные клетки в костном мозге обычно составляют 25–95%. Дифференциальная диагностика острой панцитопении проводится с такими заболеваниями, как апластическая анемия, инфекционный мононуклеоз, недостаточность витамина В12 и фолиевой кислоты. В отдельных случаях высокое количество бластов может быть проявлением лейкемоидной реакции на инфекционное заболевание (например, туберкулез).

Гистохимическое исследование, цитогенетика, иммунофенотипирование и молекулярно-биологические исследования позволяют дифференцировать бластные клетки при ОЛЛ, ОМЛ и других заболеваниях. Для точного определения варианта острого лейкоза, что крайне важно при выборе тактики лечения, необходимо определение В-клеточных, Т-клеточных и миелоидных антигенов, а также проточной цитометрии.

Другие изменения лабораторных показателей могут включать гиперурикемию, гиперфосфатемию, гиперкалиемию или гипокалиемию, повышение печеночных трансаминаз сыворотки или ЛДГ, гиполикуминемию и гипоксию. У больных с симптомами поражения ЦНС выполняется КТ головы. Рентгенография органов грудной клетки выполняется для определения наличия опухолевого образования средостения, особенно перед проведением анестезии. КТ, МРТ или УЗИ органов брюшной полости позволяют диагностировать спленомегалию или лейкемическую инфильтрацию других органов.

Прогноз

Изление является реальной целью как при ОЛЛ, так и при ОМЛ, особенно у молодых больных. У младенцев, пожилых больных, больных с нарушением функции печени или почек, вовлечением ЦНС, миелодисплазией или высоким уровнем лейкоцитов (>20 000/мкл) прогноз неблагоприятный. Выживаемость больных, не получающих лечения, составляет, как правило, 3–6 месяцев. Прогноз также зависит от ряда факторов, таких как кариотип, ответ на терапию и общее состояние больного.

Лечение

- **Химитерапия.**
- **Поддерживающее лечение.**

Целью лечения является достижение полной ремиссии, в т.ч. разрешение клинических симптомов, восстановление нормального уровня клеток крови и нормального гемопоэза с уровнем бластных клеток в костном мозге <5% и элиминация лейкозного клона. Хотя основные принципы лечения ОЛЛ и ОМЛ схожи, режимы лечения отличаются. Разнообразие встречающихся клинических ситуаций и вариантов лечения требует участия опытных специалистов. Предпочтительно проведение лечения, особенно его наиболее сложных фаз (например, индукция ремиссии) в специализированных медицинских центрах.

Поддерживающее лечение. Поддерживающее лечение при острых лейкозах сходно и может включать:

- гемотрансфузии;
• антибиотики и противогрибковые препараты;
• гидратацию и ощелачивание мочи;
• психологическую поддержку;

Трансфузии тромбоцитов, эритроцитов и гранулоцитов выполняются по показаниям больным с кровотечениями, анемией и нейтропенией соответственно. Профилактическое переливание тромбоцитов выполняется при уровне тромбоцитов периферической крови <10 000/мкл; при наличии лихорадки, диссеминированного внутрисосудистого свертывания и мукозита, обусловленного химиотерапией, используется более высокий пороговый уровень (20 000/мкл). При анемии (Hb <8 г/дл) применяется трансфузия эритроцитарной массы. Трансфузия гранулоцитов может применяться у больных с нейтропенией и развитием грамнегативных и других серьезных инфекций, но ее эффективность в качестве профилактики не была доказана.

Антибиотики часто необходимы в связи с тем, что у больных развиваются нейтропения и иммуносупрессия, что может приводить к быстрому развитию инфекций без проявления обычной клинической картины. После проведения необходимых обследований и посева культур пациентам с лихорадкой и уровнем нейтрофилов <500/мкл следует начинать лечение антибактериальными препаратами широкого спектра действия, воздействующими и на грамнегативные и на грамплюситивные микроорганизмы (например, цефталидин, имипеним, ципрофлоксацин). Часто встречаются грибковые инфекции, особенно пневмонии, и их диагностика затруднительна, поэтому при неэффективности антибактериальной терапии в течение 72 часов показано эмпирическое назначение противогрибковых препаратов. У больных с ренагативной анемией необходимо выполнять бронхоэспективию и бронхолазиво-ларный лаваж и назначить соответствующее лечение. Часто необходимо эмпирическая терапия, включающая триметоприм-сульфаметоксазол (TMP/SMX), амфotericин B, ацикловир или его аналоги и трансфузии гранулоцитов. У больных с иммуносупрессией, индуцированной лечением и риском развития оппортунистической инфекции, TMP/SMX должен быть назначен для профилактики пневмо- мии, вызванной P. jirovecii.

Гидратация (увеличение суточного объема вводимой жидкости в 2 раза), ощелачивание мочи (pH 7–8) и мониторинг электролитов могут предотвратить развитие гипокалиемии, гипофосфатемии, гиперкалиемии и гиперурикемии (тумор-лизис синдром), которые вызываются быстрым лизисом опухолевых клеток при проведении индукционной терапии (в особенности при ОЛЛ). Профилактика гиперурикемии проводится назначением аллопуринола (ингибитор ксантинооксидазы) или расбуриказы (рекомбинантная уратоксидаза) до начала химиотерапии, что позволяет уменьшить трансформацию ксантина в мочевую кислоту.

Психологическая поддержка может помочь больным и их семьям преодолеть шок от болезни и трудности лечения этого потенциально опасного для жизни заболевания.

ОСТРОЙ ЛИМФОЛЕЙКОЗ (острый лимфобластный лейкоз)

ОЛЛ является наиболее частым онкологическим заболеванием у детей, но поражает также и взрослых всех возрастов. Злокачественная трансформация и неконтролируемая пролиферация аномально дифференцированных, долго живущих гемопоэтических клеток-предшественниц приводит к появлению большого количества циркулирующих бластных клеток, замещению нормального костного мозга опухолевыми клетками и возможности лейкемической инфильтрации ЦНС и внутренних органов. Симптомы включают утомляемость, слабость, инфекции, боли в костях, склонность к подкожным кровоизлияниям и кровотечениям. Диагноз в большинстве случаев можно поставить на основе изучения мазка периферической крови и костного мозга. Лечение включает в себя комбинированную химиотерапию для индукции ремиссии, интратекальную химиотерапию для профилактики поражения ЦНС и/или лучевую терапию на головной мозг при наличии внутричерепных лейкозных инфильтратов, консолидирующую терапию с или без трансплантации
гемопоэтических стволовых клеток и поддерживающую терапию до 3 лет для профилактики рецидивов.

Две трети всех случаев ОЛЛ регистрируется у детей. Пик заболеваемости приходится на возраст 2–5 лет. ОЛЛ является наиболее часто встречаемой зло качественной опухолью у детей и второй по частоте причиной смерти у детей <15 лет. Второй пик заболеваемости приходится на возраст 45 лет.

Прогноз

Прогностические факторы позволяют более точно определить протокол лечения и его интенсивность.

Благоприятные прогностические факторы:
- Возраст 3–9 лет.
- Лейкоциты <25 000/мкл (<50 000/мкл у детей).
- Вариант L1 по FAB-классификации.
- Кариотип лейкозных клеток с наличием >50 хромосом и t (12; 21).
- Отсутствие поражения ЦНС.

Неблагоприятные прогностические факторы:
- Кариотип лейкозных клеток с нормальным числом хромосом, но аномальной морфологией (псевдодиплоидный).
- Наличие филадельфийской (Ph) хромосомы t (9; 22).
- Пожилой возраст.
- B-клеточный иммунофенотип с поверхностным или цитоплазматическим иммуноглобулином.

Вне зависимости от прогностических факторов вероятность достижения ремиссии после индукционного лечения ≥95% у детей и 70–90% у взрослых. 5-летняя выживаемость без признаков заболевания, которая позволяет говорить об излечении от заболевания, составляет 75% у детей и 30–40% у взрослых. Иматиниб улучшает результаты лечения у больных Ph-позитивным ОЛЛ при добавлении интракраниального введения метотрексата или аспарагиназы. Другие препараты и комбинации, применяемые на ранних этапах индукции, включают цитарбитин, этопозид, циклофосфамид. В некоторых режимах применяется среднедозный или высокодозный метотрексат с поддержкой лейковорином. Консолидация и дозы препаратов могут различаться в зависимости от наличия факторов риска. У больных Ph-позитивным ОЛЛ к лечению может быть добавлен иматиниб.

Лечение

- Химиотерапия.
- В отдельных случаях — трансплантация гемопоэтических стволовых клеток или лучевая терапия.

Протокол лечения ОЛЛ включает 4 фазы:
- индукцию ремиссии;
- профилактику поражения ЦНС;
- консолидацию или интенсификацию после достижения ремиссии;
- поддерживающую терапию.

Индукция ремиссии. Целью индукционного этапа является достижение ремиссии. Ряд индукционных режимов придают особое значение раннему применению интенсивной многокомпонентной химиотерапии. Режимы индукции ремиссии могут включать ежедневный прием преднизолона внутрь, еженедельное введение винкristina с добавлением антрациклинов или аспарагиназы. Другие препараты и комбинации, применяемые на ранних этапах индукции, включают цитарбитин, этопозид, циклофосфамид. В некоторых режимах применяется среднедозный или высокодозный метотрексат с поддержкой лейковорином. Консолидация и дозы препаратов могут различаться в зависимости от наличия факторов риска. У больных Ph-позитивным ОЛЛ к лечению может быть добавлен иматиниб.

Профилактика поражения ЦНС. Профилактика и лечение лейкозной инфилтрации мозговых оболочек включает интракраниальное введение комбинации метотрексата, цитарбитин и кортикостероидов или метотрексата и цитарбитина по отдельности. Облучение черепных нервов или всего головного мозга может быть необходимо у больных с высоким риском поражения ЦНС (например, высокий уровень лейкоцитов крови, высокое ЛДГ, B-клеточный фенотип), но в последние годы частота применения этого метода лечения снижается.

Консолидация ремиссии. Целью консолидации является предотвращение рецидива лейкоза. Консолидационный этап лечения, как правило, длится несколько месяцев. В нем применяются комбинации препаратов с другими механизмами действия, чем препараты, используемые в индукции. У больных Ph-позитив-
Глава 152. Лейкозы

nym ОЛЛ и во вторых и более поздних рецидивах или ремиссиях рекомендовано проведение аллогенной трансплантации гемопоэтических стволовых клеток.

Поддерживающая терапия. Большинство режимов лечения включают поддерживающую терапию метотрексатом и меркаптопурином. Продолжительность лечения обычно составляет 2,5–3 года, но при применении более интенсивных режимов на ранних этапах лечения может продолжаться меньше.

При лейкемической форме лимфомы Беркита или ОЛЛ из зрелых B-клеток (L3 по FAB-классификации) обычно применяются короткие интенсивные режимы лечения. У больных, достигших полной ремиссии, лечение прекращается через 1 год, риск рецидива низкий.

Рецидив. Лейкозные клетки могут повторно появиться в костном мозге, ЦНС, яичках и в других органах. Наиболее опасен костномозговой рецидив. Хотя вторая линия лечения приводит к ремиссии у 80–90% детей и 30–40% взрослых, последующие ремиссии, как правило, короткие. Лишь небольшая часть больных с ранним костномозговым рецидивом достигает продолжительной второй полной ремиссии или излечения.

Наиболее эффективным методом является аллогенная трансплантация гемопоэтических стволовых клеток от HLA-совместимого сиблинга. Иногда проводится трансплантация от других родственников или неродственных доноров. Этот метод редко применяется у больных старше 65 лет, т.к. в этой группе больных он менее эффективен, а нежелательные явления чаще приводят к смерти.

При рецидивах с поражением ЦНС применяется интратекальное введение мозга, ЦНС, яичках и в других органах. Наиболее опасен костномозговой рецидив. Хотя вторая линия лечения приводит к ремиссии у 80–90% детей и 30–40% взрослых, последующие ремиссии, как правило, короткие. Лишь небольшая часть больных с ранним костномозговым рецидивом достигает продолжительной второй полной ремиссии или излечения.

Наиболее эффективным методом является аллогенная трансплантация гемопоэтических стволовых клеток от HLA-совместимого сиблинга. Иногда проводится трансплантация от других родственников или неродственных доноров. Этот метод редко применяется у больных старше 65 лет, т.к. в этой группе больных он менее эффективен, а нежелательные явления чаще приводят к смерти.

При рецидивах с поражением ЦНС применяется интратекальное введение метотрексата (с или без цитарбина или кортикостероидов) дважды в неделю до исчезновения всех симптомов. Из-за высокой вероятности системного распространения бластных клеток, как правило, применяется и системная индукция. Роль продолжительного применения интратекальных препаратов и облучения ЦНС остается неясной.

Рецидив в яичках может клинически проявляться безболезненным плотным увеличением тестикула или может быть выявлен при биопсии. При клинических признаках одностороннего поражения необходимо проведение биопсии пораженного яичка. Лечение включает лучевую терапию на пораженное яичко и системную индукцию, как при изолированном рецидиве в ЦНС.

Ключевые пункты

- ОЛЛ является наиболее частым онкологическим заболеванием у детей, но поражает также и взрослых всех возрастов.
- Часто поражается ЦНС. Большинству больных выполняется интратекальное введение химиопрепаратов и кортикостероидов, иногда проводится облучение ЦНС.
- Частота ответа на лечение высокая. Излечение достигается у 75% детей и 30–40% взрослых.
- При рецидиве наиболее эффективным методом является аллогенная трансплантация гемопоэтических стволовых клеток.

Острый миелоидный лейкоз (острый миелолейкоз)

При ОМЛ злокачественная трансформация и неконтролируемая фиброзация аномально дифференцированных, долго живущих клеток – предшественник миелоидного ряда вызывает появление большого количества бластных клеток в циркулирующей крови и замещение нормального костного мозга опухолевыми клетками. Симптомы включают утомляемость, бледность, склонность к образованию кровоизлияний и кровотечениям, лихорадку, развитие инфекционных осложнений. Симптомы экстремедуллярной лейкозной инфильтрации отмечаются только у 5% (как правило, в виде кожных проявлений). Для установления диагноза необходимо исследование мазка периферической крови и костного мозга. Лечение включает индукционную химиотерапию, целью которой является достижение ремиссии, и консолидирующую терапию (с или без трансплантации гемопоэтических стволовых клеток) для профилактики рецидива.

Заболеваемость ОМЛ увеличивается с возрастом. Это наиболее распространеный лейкоз у взрослых, медиана возраста больных 50 лет. ОМЛ
Раздел 12. Гематология и онкология

ОМЛ может развиваться как вторичное онкологическое заболевание после химиотерапии или лучевой терапии по поводу различных видов рака. ОМЛ разделяют на несколько вариантов, отличая их друг от друга морфологически, иммунофенотипически и цитохимически. На основании доминирующего типа клеток выделяют 5 классов ОМЛ: миелоцитарный, миело-моноцитарный, моноцитарный, эритроцитарный и мегакариоцитарный.

Острый промиелоцитарный лейкоз (ОПЛ) представляет собой особый вариант ОМЛ, составляющий 10–15% от всех случаев ОМЛ. Он чаще встречается у молодых больных (медиана возраст 31 год) и у латиноамериканцев. Этот вариант часто дебютирует нарушениями свертывания крови.

Прогноз
При проведении индукционного лечения ремиссия достигается у 50–85% больных. Продолжительный безрецидивный период наблюдается у 20–40% больных, до 40–50% у молодых больных, которым выполняется интенсивная химиотерапия или трансплантация гемопоэтических стволовых клеток.

Прогностические факторы позволяют более точно определить протокол лечения и его интенсивность. Больные с неблагоприятными прогностическими факторами получают более интенсивное лечение, потому что потенциальная эффективность такого лечения может оправдать его высокую токсичность. Важным прогностическим фактором является карийотип лейкозных клеток. При разных хромосомных нарушениях различных форм ОМЛ эффективность лечения разная. Выделяют благоприятную, промежуточную и неблагоприятную прогностические группы. Высокие частота ответа на лечение, продолжительность ремиссии и выживаемость больных отмечается у больных с мутациями t (8;21), t (15;17) и inv (16). Больные с нормальным карийотипом относятся к группе с промежуточным прогнозом. Благоприятный прогноз у больных с делециями 5, 7, трисомией 8 или карийотипом с >3 нарушениями. Молекулярно-генетические нарушения становятся все более важными для определения прогноза и тактики лечения ОМЛ. Важным прогностическим фактором является наличие генетических аномалий, определяющих ответ на лечение и продолжительность ремиссии.

Лечение
- Химиотерапия (индукция и консолидация).
- Иногда трансплантация гемопоэтических стволовых клеток.

Индукция ремиссии. Целью индукционной терапии является достижение ремиссии. При ОМЛ эта цель достигается меньшим количеством препаратов, чем при ОЛЛ. Основной режим индукции включает продолжительную внутривенную инфузию цитарбина или цитарбина в высоких дозах в течение 5–7 дней; в это же время в течение 3 дней внутривенно вводится даунорубицин или идарубицин. Иногда применяются также 6-тиогуанин, этопозид, винкристин и преднизолон, но их значение не доказано. Лечение обычно приводит к выраженной миелопролиферации с инфекционными осложнениями и кровоточивостью. Восстановление костного мозга занимает продолжительное время. В это время жизненно важна адекватная профилактическая и поддерживающая терапия.

При ОПЛ и некоторых других вариантах ОМЛ при постановке диагноза может присутствовать диссеминированное внутрисосудистое свертывание (ДВС), усугубляемое высвобождаемыми лейкозными клетками прокоагулянтами. При ОПЛ транслокацией t (15;17) применение трансретиноидной кислоты способствует коррекции ДВС в течение 2–5 дней. В комбинации с даунорубицином или идарубицином этот режим может приводить к достижению ремиссии у 80–90% пациентов, с продолжительной выживаемостью в 65–70% случаев. При ОПЛ также очень эффективен триоксид мышьяка.

Консолидация ремиссии. После достижения ремиссии проводится фаза интенсификации...
кации теми же или другими препаратами. Режимы с применением высоких доз цитарбина могут продлить ремиссию, особенно у больных моложе 60 лет. Профилактика поражения ЦНС у взрослых больных обычно не проводится, т.к. в случае сохранения ремиссии изолированное поражение ЦНС встречается редко. Больным, получившим полный курс консолидации ремиссии, поддерживающая терапия не показана.

Рецидив. Больным, не ответившим на лечение, и молодым больным в ремиссии, но с высоким риском рецидива (как правило, определенным на основании наличия отдельных хромосомных нарушений), может быть показано проведение высокодозной терапии с трансплантацией гемопоэтических стволовых клеток. Изолированный экстрамедуллярный рецидив встречается редко. В случае рецидива у больных, которым не может быть выполнена трансплантация, дополнительная химиотерапия, как правило, малоэффективна и высокотоксична. Более эффективно противорецидивное лечение у молодых больных и у больных, у которых ремиссия продолжалась более 1 года.

Ключевые пункты
- ОМЛ – наиболее распространенный острый лейкоз у взрослых.
- Существует несколько вариантов. Как правило, поражаются незрелые миелоидные клетки.
- Хромосомные нарушения встречаются часто и определяют прогноз и эффективность лечения.
- Химиотерапия обычно позволяет увеличить продолжительность жизни.
- Трансплантация гемопоэтических стволовых клеток эффективна у больных, не отвечающих на лечение, и у молодых больных.

ХРОНИЧЕСКИЙ ЛЕЙКОЗ

Хронический лейкоз обычно проявляется аномальным лейкоцитозом с или без цитопении у больных без других симптомов. Клинические проявления и лечение при хроническом лимфолейкозе (ХЛЛ) и хроническом миелолейкозе (ХМЛ) значительно различаются.

ХРОНИЧЕСКИЙ ЛИМФОЛЕЙКОЗ

(хронический лимфоцитарный лейкоз)

ХЛЛ является наиболее распространенным вариантом лейкоза в западных странах. Субстратом ХЛЛ являются неопластические лимфоциты с морфологией зрелых В-клеток и с аномально долгой продолжительностью жизни. Поражаются периферическая кровь, костный мозг, селезенка и лимфоузлы. Заболевание может протекать бессимптомно или проявляться лимфаденопатией, спленомегалией, гепатомегалией и неспецифическими симптомами, обусловленными анемией (утомляемость, недомогание) и иммуносупрессией (например, лихорадка). Диагноз устанавливается при исследовании мазка периферической крови или аспирата костного мозга. Лечение не начинается до развития симптомов болезни, его целью является продление жизни и уменьшение симптомов заболевания. Оно включает хлорамбук или флуораден, преднизолон, циклофосфамид и/или доксорубицин. Все чаще применяются моноантиобулы, такие как алемтумаб и ритуксимаб. Паллиативная лучевая терапия применяется у больных, у которых лимфаденопатия или спленомегалия нарушает функцию других органов.

Заболеваемость ХЛЛ увеличивается с возрастом, в 75% случаев заболевание выявляется у больных старше 60 лет. ХЛЛ в 2 раза чаще поражает мужчин. Хотя причина заболевания неизвестна, в некоторых случаях отмечается семейный анамнез. ХЛЛ редко встречается в Японии и Китае и заболеваемость не увеличивается у этнических японцев, живущих в США, что также подтверждает наличие генетического фактора. Наиболее распространен ХЛЛ у евреев из Восточной Европы.

Патофизиология

Приблизительно в 98% случаев происходит злокачественная трансформация CD5+ В-клеток. Лимфоциты сначала накапливаются в костном мозге, а в дальнейшем распространяются на лимфатические узлы и другие лимфоидные органы, приводя в т.ч. к спленомегалии и гепатомегалии. При прогрессировании заболевания патологический гемопоз приводит к развитию
анемии, нейтропении, тромбоцитопении и снижению продукции иммуноглобулинов. У многих больных развивается гипогаммаглобулинемия и снижение продукции антител, что, возможно, обусловлено повышением активности T-клеток супрессоров. У больных повышается предрасположенность к аутоиммунным заболеваниям, характеризующимся развитием иммуногемолитической анемии (обычно с позитивной пробой Кумбса) или тромбоцитопении. Также незначительно повышается риск развития других онкологических заболеваний.

В 2–3% случаев клональная экспансия имеет T-клеточный фенотип, и даже в этой группе различается несколько подтипов (например, ХЛЛ из больших гранулярных лимфоцитов с цитопенией).

ХЛЛ включает также другие патологии:
■ пролимфоцитарный лейкоз;
■ лейкемическая фаза кожной T-клеточной лимфомы (например, синдром Сезари);
■ волосатоклеточный лейкоз;
■ лимфома/лейкоз (лейкоз, развивающийся как проявление распространенной стадии злокачественной лимфомы).

Дифференциальная диагностика этих подтипов и типичного ХЛЛ обычно может быть выполнена посредством световой микроскопии и фенотипирования.

Симптомы и признаки

Начало заболевания обычно бессимптомное. ХЛЛ обычно диагностируется случайно при выполнении рутинного анализа крови или при обследовании по поводу бессимптомной лимфаденопатии. При наличии симптомов они, как правило, представляют собой неспецифические жалобы на слабость, отсутствие аппетита, потерю веса, одышку при нагрузке, чувство наполнения желудка (из-за увеличения селезенки). При обследовании обычно выявляются генерализованная лимфаденопатия и незначительная или умеренная гепатомегалия и спленомегалия. При прогрессировании заболевания появляется бледность, обусловленная анемией. Инфильтрация кожи, макулопапулезная или диффузная, обычно развиваются при T-клеточном ХЛЛ. Гипогаммаглобулинемия и гранулоцитопения при распространенном ХЛЛ предрасполагают к развитию бактериальных, вирусных и грибковых инфекций, особенно пневмонии. Часто развивается опоясывающий лишай.

Диагноз

■ Общий анализ и мазок периферической крови.
■ Исследование костного мозга.
■ Иммунофенотипирование.

Диагноз ХЛЛ устанавливается при изучении мазка периферической крови и костного мозга; критериями диагноза являются абсолютный лейкоцитоз (>5000/мкл) и повышенное количество лимфоцитов (>30%) в костном мозге. Выполнение иммунофенотипирования облегчает дифференциальную диагностику. При обследовании могут отмечаться гипогаммаглобулинемия (<15% случаев) и, редко, повышение ЛДГ. У 10% больных выявляется умеренная анемия (иногда иммуногемолитическая) и/или тромбоцитопения. В 2–4% случаев выявляется пик моноклонального иммуноглобулина в сыворотке и на поверхности лейкозных клеток.

Клиническое стадирование применяется для определения прогноза и выбора тактики лечения. Наиболее распространенными системами стадирования являются системы Rai иBinet. Они основаны главным образом на гематологических изменениях и объеме поражения (табл. 152–3).

Прогноз

Медиана выживаемости больных ХЛЛ составляет 7–10 лет. Выживаемость без лечения больных 0–II стадиями по классификации Rai составляет 5–20 лет. Больные III–IV стадиями по классификации Rai, как правило, умирают в течение 3–4 лет после постановки диагноза. Прогрессирование с развитием недостаточно сти костного мозга ассоциируется с меньшей продолжительностью жизни. У больных ХЛЛ чаще, чем в общей популяции, развиваются вторичные онкологические заболевания, особенно рак кожи.

Лечение

■ Симптоматическое лечение.
■ Поддерживающая терапия.
Глава 152. Лейкозы

Несмотря на развитие ХЛЛ, у некоторых больных клиническая симптоматика отсутствует в течение нескольких лет. Показаниями к началу лечения являются прогрессирование заболевания и появление симптомов. Излечение, как правило, невозможно, целью лечения являются уменьшение симптомов заболевания и продление жизни. Поддерживающая терапия включает трансфузии эритроцитарной массы или эритропоэтинов по поводу анемии, трансфузии тромбоцитов по поводу кровоточивости, обусловленной тромбоцитопенией, лечение бактериальных, грибковых или вирусных инфекций. Так как нейтропения и гипогаммаглобулинемия снижают защиту организма от бактерий, необходиымо применение бактерицидных антибиотиков. Больным с гипогаммаглобулинемией и повторяющимися или рефрактерными инфекциями или при развитии двух или более тяжелых инфекций в течение 6 месяцев возможно назначение инфузии γ-глобулинов с терапевтической или профилактической целью.

Специфическая терапия включает:
- химиотерапию;
- кортикостероиды;
- моноклональные антитела;
- левченую терапию.

Эти средства могут облегчить симптомы заболевания и увеличить продолжительность жизни. Чрезмерное лечение более опасно, чем недостаточное лечение.

Химиотерапия. Химиотерапия назначается при появлении симптомов заболевания. К показаниям к началу терапии относятся развитие симптомов интоксикации (лихорадка, ночные поты, повышенная утомляемость, потеря веса), выраженная гепатомегалия, спленомегалия, лимфаденопатия, лимфоцитоз >100 000/мкл и инфекции, сопровождающиеся анемией, нейтропенией или тромбоцитопенией. В течение долгого времени стандартом лечения ХЛЛ были алырилрующие препараты, в первую очередь хлорамбуцил. Однако в последнее время было показано, что флударабин более эффективен. При применении комбинации флударабина, циклофосфамида и ритуксимаба полные ремиссии достигаются чаще. Она также продлевает длительность ремиссии и увеличивает продолжительность жизни. Интерферон α-2а, деоксикоформицин и 2-хлордеоксиаденозин очень эффективны при волосатоклеточном лейкозе. Больным с пролимфоцитарным лейкозом и лимфомой/лейкозом, как правило, показано назначение полихимиотерапии, но у них обычно достигается только частичный ответ.

Кортикостероиды. Показаниями к назначению кортикостероидов являются иммуногемолитическая анемия и тромбоцитопения. Применение преднизолона в дозе 1 мг/кг внутрь 1 раз в день может приводить к стремительному эффекту у больных распространенным ХЛЛ, однако продолжительность этого эффекта обычно невелика. Метаболические осложнения и увеличение частоты и тяжести инфекций требуют соблюдения мер предосторожности при длительном применении стероидов. Применение преднизолона в сочетании с флударабином повышает риск развития инфекций, вызванных Pneumocystis jirovecii и Listeria.

ТАБЛ. 152–3. КЛИНИЧЕСКОЕ СТАДИРОВАНИЕ ХРОНИЧЕСКОГО ЛИМФОЛЕЙКОЗА

<table>
<thead>
<tr>
<th>КЛАССИФИКАЦИЯ И СТАДИЯ</th>
<th>ОПИСАНИЕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rai</td>
<td></td>
</tr>
<tr>
<td>Стадия О</td>
<td>Абсолютный лимфоцитоз >10 000/мкл в крови и ≥30% лимфоцитов в костном мозге</td>
</tr>
<tr>
<td>Стадия I</td>
<td>Стадия O + увеличение лимфоузлов</td>
</tr>
<tr>
<td>Стадия II</td>
<td>Стадия 0 + гепатомегалия или спленомегалия</td>
</tr>
<tr>
<td>Стадия III</td>
<td>Стадия 0 + анемия (гемоглобин <11 г/дл)</td>
</tr>
<tr>
<td>Стадия IV</td>
<td>Стадия 0 + тромбоцитопения (тромбоциты <100 000/мкл)</td>
</tr>
<tr>
<td>Binet</td>
<td></td>
</tr>
<tr>
<td>Стадия A</td>
<td>Абсолютный лимфоцитоз >10 000/мкл в крови и ≥30% лимфоцитов в костном мозге. Гемоглобин ≥10 г/дл. Тромбоциты ≥100 000/мкл. <2 зон поражения*</td>
</tr>
<tr>
<td>Стадия B</td>
<td>Как при стадии A, но 3–5 зон поражения</td>
</tr>
<tr>
<td>Стадия C</td>
<td>Как при стадии A, но гемоглобин <10 г/дл или тромбоциты <100 000/мкл</td>
</tr>
</tbody>
</table>

*Зоны поражения: шейные, подмышечные и паховые лимфоузлы, печень, селезенка.
Моноклональные антитела. Ритуксимаб является первым моноклональным антителом, успешно применяемым для лечения лимфопролиферативных заболеваний. У ранее нелеченных больных частота общего ответа составляет 75%, полная ремиссия достигается у 20% пациентов. При применении алемузумаба общий ответ достигается у 33% больных, рефрактерных к флударабину, и у 75–80% первичных больных. Проблемы, связанные с иммуносупрессией, при применении алемузумаба встречаются чаще, чем при применении ритуксимаба. Ритуксимаб исследовался в комбинации с флударабином и циклофосфамидом; применение этих комбинаций значительно увеличивало частоту достижения полных ремиссий как у первичных, так и у ранее предлеченных больных. Алемузумаб исследуется в настоящее время в комбинации с ритуксимабом и химиотерапией для эрадикации минимальной остаточной болезни, и была показана его эффективность для устранения инфильтрации костного мозга. При применении алемузумаба может развиваться реактивация цитомегаловируса и других оппортунистических инфекций. При применении ритуксимаба встречается реактивация вируса гепатита В.

Лучевая терапия. С паллиативной целью может применяться локальная лучевая терапия на пораженные лимфоузлы или печень и селезенку. В отдельных случаях может с паллиативной целью применяться тотальное облучение тела малыми дозами.

Ключевые пункты
- ХЛЛ – медленно прогрессирующий лейкоз из зрелых лимфоцитов, встречается преимущественно у пожилых больных.
- Лечение не приводит к излечению, обычно не применяется до развития симптомов.
- Химиотерапия с или без моноклональных антител облегчает симптомы и увеличивает продолжительность жизни больных.

ХОРОНИЧЕСКИЙ МИЕЛОЛЮКЗ
(хронический гранулоцитарный лейкоз, хронический миелогенный лейкоз, хронический миелоидный лейкоз)

ХМЛ развивается в результате злокачественной трансформации и клональной профилиферации плурипотентных стволовых клеток, приводящей к гиперпродукции незрелых гранулоцитов. Заболевание изначально протекает бессимптомно. Прогрессирование протекает скрыто, с неспецифической «доброкаечественной» стадией (недомогание, отсутствие аппетита, потеря веса), постепенно переходит в фазу акселерации и в бластный криз с выраженными симптомами заболевания, такими как спленомегалия, бледность, кровоточивость, лихорадка, лимфаденопатия и кожные изменения. Диагноз устанавливается на основании исследования мазка периферической крови, аспирации костного мозга и определения Филадельфийской хромосомы. Применение иматиниба значительно улучшило результаты лечения и позволяет увеличить продолжительность жизни больных ХМЛ. Возможность добиваться полного излечения от ХМЛ при применении иматиниба до сих пор не установлена. Также в лечении ХМЛ применяются миелосупрессивные препараты (например, гидроксимочевина), трансплантация гемопоэтических стволовых клеток и интерферон альфа.

ХМЛ составляет около 15% от всех лейкозов взрослых. Он встречается в любом возрасте, однако редко развивается у детей до 10 лет. Медиана возраста больных – 45–55 лет. ХМЛ одинаково распространен у мужчин и у женщин.

Патофизиология
Большинство случаев ХМЛ индуцировано транслокацией, известной как Филадельфийская (Ph) хромосома, которая выявляется у 95% больных. Она представляет собой рекиционную транслокацию t (9; 22), при которой часть хромосомы 9, содержащая онкоген c-abl, транслокируется на хромосому 22 и соединяется с геном BCR. Объединенный ген BCR-ABL играет важную роль в патогенезе ХМЛ и приводит к продукции специфической тирозинкиназы. ХМЛ развивается вследствие гиперпродукции гранулоцитов аномальной плурипотентной гемопоэтической клеткой-предшественницей, которая происходит главным образом в костном мозге, но также может быть в экстрамедуллярных очагах (селезенка, печень). Хотя преобла-
Глава 152. Лейкозы

dает продукцию гранулоцитов, опухолевый клон включает в себя также эритроциты, мегакариоциты, моноциты и даже иногда Т- и В-клетки. Нормальные стволовые клетки сохраняются и могут активизироваться после лекарственной супрессии опухолового клона.

Течение ХМЛ разделяют на 3 фазы:

■ Хроническая фаза: начальный индолентный период, который может продолжаться от нескольких месяцев до нескольких лет.

■ Фаза акселерации: отсутствие эффекта от терapiи, прогрессирующая тромбоцитопения или тромбоцитоз, персистирующая или прогрессирующая спленомегалия, клональная эволюция, увеличение количества базофилов в крови, увеличение количества бластов в крови или костном мозге.

■ Бластный криз: аккумуляция бластов в экстрамедуллярных очагах (например, кости, ЦНС, лимфатические узлы, кожа), количество бластов в крови или костном мозге > 20%.

Бластный криз приводит к стремительному развитию осложнений, сходных с осложнениями при остром лейкозе, таких как сепсис и кровотечения. У некоторых больных хроническая фаза непосредственно переходит в fazu бластного криза.

Симптомы и признаки

Начало заболевания обычно бессимптомное. Неспецифические симптомы (например, утомляемость, слабость, потеря аппетита, потеря массы тела, лихорадка, ночные поты, ощущение полноты в животе), как правило, нарастают постепенно и являются поводом к началу обследования. Бледность, кровоточивость, лимфаденопатия в дебюте заболевания встречаются редко, однако в 60–70% случаев наблюдается умеренная или даже выраженная спленомегалия. При прогрессировании заболевания нарастает спленомегалия, возникают бледность и кровоточивость. Лихорадка, выраженная лимфаденопатия и макулопапулезная кожная сыпь свидетельствуют о неблагоприятном течении заболевания.

Диагностика

■ Общий анализ крови, мазок периферической крови.

■ Исследование костного мозга.

■ Цитогенетическое исследование (Ph-хромосома).

ХМЛ чаще всего диагностируется на основании данных общего анализа крови, как случайная находка или при обследовании по поводу спленомегалии. Количество гранулоцитов повышено, обычно < 50 000/мкл у бессимптомных пациентов и от 200 000/мкл до 1 000 000/мкл у больных с симптомами заболевания. Количество тромбоцитов нормальное или незначительно повышено. Уровень гемоглобина обычно > 10 г/дл.

Исследование мазка периферической крови обычно позволяет дифференцировать ХМЛ от лейкоцитоза иной этиологии. При ХМЛ в мазке крови обычно выявляются незрелые гранулоциты, абсолютная эозинофилия и базофилия, хотя при уровне лейкоцитов < 50 000/мкл незрелые гранулоциты могут не выявляться. Лейкоцитоз у больных миелофиброзом, как правило, сопровождается появлением ядросодержащих эритроцитов, каплевидных эритроцитов, анемией и тромбоцитопенией. Лейкемоидные реакции при других онкологических заболеваниях или инфекции, как правило, не сопровождаются эозинофилией и базофилией.

Щелочная фосфатаза обычно снижена при ХМЛ и повышена при лейкемоидных реакциях. Исследование костного мозга должно выполняться для оценки карийотипа, клеточности и распространенности миелофиброза.

Диагноз подтверждается при обнаружении Ph-хромосомы посредством цитогенетического или молекулярного анализа, хотя у 5% больных она отсутствует.

В фазе акселерации обычно развиваются анемия и тромбоцитопения. Может увеличиваться количество базофилов, нарушается созревание гранулоцитов. Нарастает бессимптомный клеток, повышается уровень щелочной фосфатазы. В костном мозге развивается миелофиброэоз, при микроскопии обнаруживаются сидеробласты. Эволюция опухолевого клона сопровождается развитием нового аномального карийотипа, часто определяется дополнительная хромосома 8 или изохромосома 17.

Дальнейшее прогрессирование заболевания может привести к развитию бластного криза с...
появлением миелобластов (у 60% больных), лимфобластов (30%) и мегакариобластов (10%). У 80% больных развиваются дополнительные хромосомные нарушения.

Прогноз

При применении иматиниба 5-летняя общая выживаемость больных, которым диагноз был поставлен в хронической фазе заболевания, составляет >90%. До начала применения иматиниба в первые 2 года после установления диагноза умирало 5-10% больных и затем – 10-15% ежегодно. Медиана продолжительности жизни была 4–7 лет. Большинство (90%) больных погибает в фазу акселерации или во время бластного криза. Медиана продолжительности жизни после бластного криза составляет 3–6 месяцев или больше в случае достижения ремиссии.

При Ph-негативном ХМЛ и хроническом миеломоцитарном лейкозе прогноз менее благоприятный, чем при Ph-позитивном ХМЛ. Клиническое течение этих заболеваний такое же, как при миелодиспластическом синдроме.

Лечение

- Ингибитор тирозинкиназы, иногда в комбинации с химиотерапией.
- В отдельных случаях – трансплантация гемопоэтических стволовых клеток.

За исключением случаев, когда успешно применяется трансплантация гемопоэтических стволовых клеток, лечение не приводит к излечению. Однако при применении ингибиторов тирозинкиназы продолжительность жизни больных значительно увеличивается, максимальная общая выживаемость больных не достигнута. У отдельных больных возможно прекращение приема ингибиторов тирозинкиназы, при этом ремиссия может сохраняться. Возможная продолжительность ремиссии в таком случае до сих пор не определена.

Иматиниб и некоторые более новые препараты (дазатиниб, нилотиниб) ингибитируют специфическую тирозинкиназу, синтезируемую геном BCR-ABL. Ингибиторы тирозинкиназы высокоэффективны для достижения полной клинической и цитогенетической ремиссии при Ph-позитивном ХМЛ и значительно превосходят по эффективности другие режимы (например, интерферон с или без цитарабина). Иматиниб также более эффективен, чем другие терапевтические варианты, для лечения фазы акселерации и бластного криза. При лечении бластного криза комбинация химиотерапии и иматиниба более эффективна, чем применение любого из этих вариантов лечения по отдельности. Терапия иматинибом обладает хорошей переносимостью. Высокая частота достижения продолжительных полных ремиссий при применении иматиниба позволяет надеяться на возможность излечения данного заболевания.

Более старые режимы химиотерапии применяются для лечения BCR-ABL-негативных больных, больных с рецидивами после применения иматиниба и больных в фазе бластного криза. Основными препаратами являются бисульфан, гидроксимочевина и интерферон. Терапию гидроксимочевиной легче всего проводить, и она характеризуется наименьшим количеством побочных эффектов. Начальная доза обычно составляет 500–1000 мг внутрь 2 раза в сутки. Контроль общего анализа крови должен выполняться 1 раз в 1–2 недели, с соответствующей коррекцией дозы. При применении бисульфана часто развивается непредсказуемая миелосупрессия, при применении интерферона – гриппоподобный синдром, плохо переносимый больными. Основное преимущество этих препаратов – уменьшение спленомегалии и аденопатии и контроль опухолевой нагрузки, что позволяет снизить вероятность развития тумор-лизис синдрома и подагры. Ни один из этих препаратов не увеличивает медиану выживаемости более чем на 1 год в сравнении с большими, не получающими лечения. Таким образом, основная цель лечения данными препаратами – симптоматическая, и оно не продолжается при развитии нежелательных явлений.

Аллогенная трансплантация гемопоэтических стволовых клеток может успешно применяться у больных, рефрактерных к терапии.

Хотя облучение селезенки применяется редко, оно может быть полезным у больных с рефрактерным течением ХМЛ и в терминальной стадии заболевания при наличии выраженной спленомегалии. Доза обычно составляет 6–10 Гр с разделением на фракции по 0,25–2 Гр/сут. Лечение
Глава 152. Лейкозы

должно начинаться с очень низких доз и сопровождаться тщательным мониторингом уровня лейкоцитов. Эффективность обычно невысока.

Спленэктомия может облегчить дискомфорт в брюшной полости, снизить тромбоцитопению и уменьшить потребность в гемотрансфузиях, в тех случаях, когда спленомегалию не удается контролировать химиотерапией или лучевой терапией. В лечении хронической фазы ХМЛ спленэктомия значительной роли не играет.

Ключевые пункты
■ В большинстве случаев ХМЛ вызывается хромосомной транслокацией с образованием Филадельфийской хромосомы.
■ Исследование мазка периферической крови (незрелые гранулоциты, абсолютная эозинофилия и базофилия) обычно позволяет дифференцировать ХМЛ от лейкоцитоза иной этиологии (другие онкологические заболевания, инфекции, миелофиброз).
■ Применение ингибиторов тирозинкиназы, таких как иматиниб, позволяет значительно увеличить продолжительность жизни, но не приводит к излечению.
■ В фазе бластного криза эффективна химиотерапия.
■ Трансплантация гемопоэтических стволовых клеток эффективна у больных, не отвечающих на лечение, и у больных в фазе акселерации или бластного криза.

МИЕЛОДИСПЛАСТИЧЕСКИЙ СИНДРОМ
Миелодиспластический синдром (МДС) включает группу заболеваний, характеризующихся цитопенией в периферической крови, дисплазией гемопоэтических клеток-предшественников, гиперклеточностью костного мозга и высоким риском развития ОМЛ. Симптомы зависят от того, какая клеточная линия наиболее поражена, и могут включать утомляемость, слабость, бледность (вследствие анемии), повышение частоты инфекций и лихорадку (вследствие нейтропении), кровоточивость и склонность к кровоизлияниям (вследствие тромбоцитопении). Диагноз устанавливается на основании данных общего анализа крови, исследования мазка периферической крови и аспирации костного мозга. Лечение 5-азацитидином может быть эффективным. При развитии ОМЛ применяются стандартные протоколы для лечения данного заболевания.

Патофизиология
МДС представляет собой группу заболеваний, включающую в себя предлейкоз, рефрактерную анемию, РН-негативный ХМЛ, хронический миеломоноцитарный лейкоз и идиопатическую миелоидную метаплазию, возникающих в результате соматических мутаций гемопоэтических клеток-предшественников. Этиология, как правило, неизвестна, риск развития заболевания повышен у лиц, подвергавшихся воздействию бензола, радиации и химиотерапевтических препаратов (особенно продолжительные или интенсивные режимы лечения, а также режимы с включением алкилирующих препаратов или эпидофиллотоксинов).

МДС характеризуется клональной пролиферацией гемопоэтических стволовых клеток, включая эритроидные, миелоидные и мегакариоцитарные формы. Костный мозг нормоклеточный или гиперклеточный, неэффективный гемопоэз может приводить к развитию анемии (чаще всего), нейтропении, тромбоцитопении или их сочетания. Нарушение клеточной продукции также сопровождается изменениями морфологии клеток в костном мозге и крови. Иногда развивается экстрамедуллярный гемопоэз, приводящий к гепатомегалии и спленомегалии. Миелофиброз иногда выявляется при установлении диагноза или развивается в течение развития МДС. Классификация МДС основана на данных общего анализа крови и исследования костного мозга (табл. 152–4). Клон МДС нестабилен и имеет тенденцию к трансформации в ОМЛ.

Симптомы и признаки
Симптомы зависят от наиболее пораженной клеточной линии и могут включать бледность, слабость и утомляемость (анемия), лихорадку и инфекции (нейтропения), повышенную склонность к кровоизлияниям, петехиям и кровоточивость из слизистых (тромбоцитопения). Часто развиваются спленомегалия и гепатомегалия. Симптомы также могут зависеть от сопутствующих заболеваний, например у пожилых больных
с сердечно-сосудистыми заболеваниями может усиливаться стенокардия.

Диагностика
- Общий анализ крови.
- Исследование мазка крови.
- Исследование костного мозга.

МДС может быть заподозрен у больных (особенно пожилых) с рефрактерной анемией, лейкопенией или тромбоцитопенией. Необходимо исключить вторичные цитопении при врожденных заболеваниях, дефиците витаминов и побочном действии лекарственных средств. Диагноз основывается на исследовании крови и костного мозга, при котором выявляются морфологические нарушения в 10–20% клеток отдельной клеточной линии.

Наиболее частым проявлением заболевания является анемия, как правило, сопровождающаяся макроцитозом и анемией сидеробластов. МДС костного мозга, при котором выявляются морфологические нарушения в 10–20% клеток отдельной клеточной линии.

Таблица 152–4. Изменения в костном мозге и выживаемость при различных вариантах миелодиспластического синдрома

<table>
<thead>
<tr>
<th>КЛАССИФИКАЦИЯ</th>
<th>КРИТЕРИИ</th>
<th>МЕДИАНА ВЫЖИВАЕМОСТИ (ГОДЫ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рефрактерная анемия</td>
<td>Анемия с ретикулоцитопенией. Нормальный или гиперплеточный костный мозг с эритропоэзом и нарушением эритропоэза. Бласты ≤5% от ЯКМК.</td>
<td>≥5</td>
</tr>
<tr>
<td>Рефрактерная анемия с сидеробластами</td>
<td>Аналогично рефрактерной анемии, но с кольцевыми сидеробластами >15% от ЯКМК.</td>
<td>≥5</td>
</tr>
<tr>
<td>Рефрактерная анемия с избытком бластов</td>
<td>Цитопения ≥2 клеточных линий с морфологическими нарушениями клеток крови. Гиперплеточный костный мозг с нарушениями эритропоэза и гранULOПОЭЗА Бласты 5–20% от ЯКМК.</td>
<td>1,5</td>
</tr>
<tr>
<td>Хронический миеломоноцитарный лейкоз</td>
<td>Аналогично рефрактерной анемии, с избытком бластов, абсолютный моноцитоз в крови. Значительное увеличение количества предшественников моноцитов в костном мозге.</td>
<td>1,5</td>
</tr>
<tr>
<td>Рефрактерная анемия с избытком бластов в трансформации</td>
<td>Рефрактерная анемия с избытком бластов и ≥1 из следующих признаков:</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>• ≥5% бластов в крови.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 20–30% бластов в костном мозге.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• палочки Ауэра в предшественниках гранулоцитов.</td>
<td></td>
</tr>
</tbody>
</table>

ЯКМК – клетки костного мозга с ядрами.

Лейкоциты могут быть нормальным, сниженным или повышенным. Цитоплазматическая гранулярность нейтрофилов носит патологический характер, с анизоцитозом и различным количеством гранул. Патологическая гранулярность может также отмечаться у эозинофилов. В крови могут выявляться псевдопельгеровские клетки (гипосегментированные нейтрофилы). Моноцитоз характерен для хронического миеломоноцитарного лейкоза, в менее дифференцированных подгруппах могут встречаться незрелые миелопоэтические клетки. Цитогенетический анализ часто выявляет одно или несколько клональных нарушений, чаще всего с поражением хромосом 5 или 7.

Прогноз
Прогноз в значительной степени зависит от варианта МДС и от наличия сопутствующих заболеваний. Рефрактерная анемия или рефрактерная анемия с сидеробластами реже прогрессируют в более агрессивные формы, больные этими формами МДС чаще могут умереть от не связанных с МДС причин.

Лечение
- Симптоматическое лечение.
- Поддерживающая терапия.
Возможна трансплантация гемопоэтических стволовых клеток.

Азацитидин облегчает симптомы, снижает частоту трансформации в лейкоз и потребность в трансфузиях и, возможно, увеличивает продолжительность жизни. Другие варианты лечения носят симптоматический характер и включают трансфузии эритроцитов по поводу анемии, трансфузии тромбоцитов при кровоточивости и антибиотикотерапию при развитии бактериальных инфекций. У отдельных больных, в т.ч. рефрактерных к азацитидину, может быть эффективен гипометилирующий препарат деоксацитидин. Иногда применяются эритропоэтины для поддержки эритропоза, гранулоцитарные колониестимулирующие факторы для лечения фебрильной нейтропении и, при возможности, тромбоцитопении, однако эти препараты не увеличивают выживаемость. Альлогенная трансплантация гемопоэтических стволовых клеток является терапией выбора у молодых больных, в настоящее время исследуется возможность применения неаблативной альлогенной трансплантации у больных старше >50 лет. Ответ на лечение МДС, особенно при применении режимов лечения ОМЛ, такой же, как и при лечении ОМЛ, с учетом возраста и картина.

Ключевые пункты

- Миелодисплазический синдром – это нарушение функции гемопоэтических стволовых клеток, приводящее к клональной пролиферации аномальных клеток-предшественников.
- Заболевание обычно проявляется анемией (чаще всего), лейкопенией и/или тромбоцитопенией.
- Часто развивается трансформация в ОМЛ.
- Азацитидин облегчает симптомы, снижает частоту трансформации в лейкоз.
- Терапией выбора у молодых больных является трансплантация гемопоэтических стволовых клеток.

153 Лимфомы

Лимфомы представляют собой гетерогенную группу заболеваний, происходящих из клеток ретикулоэндотелиальной и лимфатической системы. Основные варианты лимфом – лимфома Ходжкина и неходжкинские лимфомы (НХЛ – табл. 153–1).

<table>
<thead>
<tr>
<th>ТАБЛ. 153–1. СРАВНЕНИЕ ЛИМФОМЫ ХОДЖКИНА И НЕХОДЖКИНСКИХ ЛИМФОМ</th>
<th>ХАРАКТЕРУСТИКА</th>
<th>ЛИМФОМА ХОДЖКИНА</th>
<th>НЕХОДЖКИНСКИЕ ЛИМФОМЫ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вовлечение лимфатических узлов</td>
<td>Локализуется в отдельной группе лимфоузлов</td>
<td>Как правило, более чем в одной группе лимфоузлов</td>
<td></td>
</tr>
<tr>
<td>Распространение</td>
<td>Склонность к последовательному распространению</td>
<td>Распространяется непоследовательно</td>
<td></td>
</tr>
<tr>
<td>Поражение кольца Вальдейера и мезентериальных лимфоузлов</td>
<td>Обычно не поражает</td>
<td>Часто поражает мезентериальные лимфоузлы</td>
<td></td>
</tr>
<tr>
<td>Экстранодальное поражение</td>
<td>Редко</td>
<td>Часто</td>
<td></td>
</tr>
<tr>
<td>Стадии при постановке диагноза</td>
<td>Чаще локализованные</td>
<td>Чаще распространенные</td>
<td></td>
</tr>
<tr>
<td>Гистологический вариант у детей</td>
<td>Часто варианты с благоприятным прогнозом</td>
<td>Часто варианты высокой степени злокачественности</td>
<td></td>
</tr>
</tbody>
</table>

Раньше считалось, что лимфомы и лейкозы являются полностью отдельными заболеваниями. Однако последние достижения в понимании клеточных маркеров показали, что границы между этими заболеваниями часто размыты. Представление о том, что опухолевое поражение при лимфоме ограничено лимфатической системой, а при
Лимфома Ходжкина
(болезнь Ходжкина)

Лимфома Ходжкина представляет собой локализованную или диссеминированную пролиферацию клеток лимфоэритикулярной системы, которая может поражать лимфатические узлы, селезенку, печень или костный мозг. Симптомами заболевания могут быть лимфаденопатия, лихорадка, ночные поты, потеря веса, кожный зуд, спленомегалия и гепатомегалия. Диагноз ставится на основании данных биопсии лимфатических узлов.

Лечение включает химиотерапию с или без лучевой терапии и приводит к излечению больных в 75% случаев.

В США ежегодно диагностируется около 9000 новых случаев лимфомы Ходжкина. Соотношение мужчин и женщин – 1,4:1. Заболевание редко встречается у детей до 10 лет, чаще всего выявляется в возрасте от 15 до 40 лет; второй пик заболеваемости отмечается у людей старше 50–60 лет.

Патофизиология

Лимфома Ходжкина развивается как локальная трансформация клеток В-клеточной природы, приводящая к появлению патогномоничных двухъядерных клеток Рид–Штернберга. Причина развития этого заболевания неизвестна, однако определенное значение имеют генетическая предрасположенность и влияние окружающей среды (профессия, в т.ч. работа в деревообрабатывающей промышленности; история воздействия вирусом Эпштейна–Барр, микобактерией ту- беркулеза, герпесвирусом 6 типа, ВИЧ). Риск также повышен у больных с иммуносупрессией (например, пациенты после трансплантации, получающие иммунодепрессанты), у больных с врожденной недостаточностью иммунитета (атаксия-телангиэктазия, синдром Клайнфельтера, синдром Чедиака–Хигаси, болезнь Вискотта–Олдрича) и с аутоиммунными заболеваниями (ревматоидный артрит, целиакия, синдром Шенгrena, СКВ).

У большинства больных также развивается медленно прогрессирующая недостаточность клеточного иммунитета (функции Т-клеток), что при распространенном стадиях заболевания может приводить к частому возникновению бактериальных и, реже, грибковых, вирусных и протозойных инфекций. Гуморальный иммунитет у больных распространенными стадиями также обычно бывает угнетен. Смерть больных нередко наступает от сепсиса.

Симптомы и признаки

У большинства больных выявляется безболезненное увеличение шейных лимфузлов. В ряде случаев может возникать болезненность пораженных лимфатических узлов сразу после приема алкогольных напитков, что позволяет установить диагноз на ранних этапах. Механизм этого феномена остается неизвестным.

Другие проявления заболевания развиваются с его распространением по ретикULOэндотелиальной системе, как правило, в соседних областях. Зуд может развиваться и при незначительной распространенности опухоли. К симптомам опухолевой интоксикации относятся лихорадка, профузные ночные поты и беспричинная потеря веса (> 10% массы тела за прошедшие 6 мес). Наличие этих симптомов может свидетельствовать о вовлечении медиастинальных и/или ретроперitoneальных лимфатических узлов, внутренних органов (печени) или костного мозга. Часто выявляются сплено- и гепатомегалия. У больных часто встречается лихорадка Пеля–Эбштейна (высокая лихорадка продолжительною несколько дней, сменяющая нормальной или пониженной температурой, длящейся от нескольких дней до нескольких недель). При распространенном стадиях заболевания часто развивается кахексия.

Поражение костного мозга, как правило, бессимптомное, однако может сочетаться с развитием остеобластных очагов и, редко, болевым синдромом и компрессионными переломами. Поражение ЦНС, желудка и кожи встречается редко, чаще всего у больных, инфицированных ВИЧ.

Локальное сдавление опухолевыми массами часто вызывает следующие симптомы:
желтуха, обусловленная интрапеченочным или экстрапеченочным сдавлением желчных протоков;
отек нижних конечностей за счет сдавления лимфатических сосудов таза или паха;
диспноэ и хрипы за счет компрессии верхних дыхательных путей;
образование абсцессов в легких за счет инфильтрации легочной паренхимы, которая может симулировать бронхопневмонию.

Эпидуральная инвазия с компрессией kostного мозга может приводить к развитию параплегии. Синдром Горнера и паралич гортани свидетельствуют о сдавлении увеличенными лимфатическими узлами шейных симпатических нервов и возвратного нерва. Сдавление корешков спинного мозга приводит к невралгии.

Диагноз

- Рентгенография грудной клетки.
- КТ грудной клетки, брюшной полости и малого таза.
- Общий анализ крови, биохимический анализ крови: щелочная фосфатаза, ЛДГ, показатели функции печени, альбумин, кальций, креатин.
- Биопсия лимфоузла.
- ПЭТ для стадирования, МРТ при наличии неврологических симптомов.
- Биопсия костного мозга – в отдельных случаях.

Лимфома Ходжкина обычно может подозреваться у больных с безболезненной лимфаденопатией или увеличением внутригрудных лимфоузлов, выявленных при рентгенографии органов грудной клетки. Аналогичную лимфаденопатию могут вызывать инфекционный мононуклеоз, токсоплазмоз, цитомегаловирус, неходжкинские лимфомы и лейкозы. Сходная рентгенографическая картина может наблюдаться при раке легкого, саркоидозе и туберкулезе (для оценки объемных образований средостения).

Рентгенография органов грудной клетки должна выполняться, если не была сделана ранее. В случае подтверждения данных при КТ или ПЭТ-исследовании органов грудной клетки выполняется биопсия лимфоузлов. Если увеличены только лимфоузлы средостения, выполняется медиастиноскопия или процедура по Чемберлену (ограниченная левая задняя торакотомия, позволяющая выполнить биопсию медиастинальных лимфоузлов, не доступных при медиастиноскопии). Также может выполняться биопсия под контролем КТ, однако результаты тонкостенной биопсии часто могут быть недостаточными, поэтому требуется выполнение кор-биопсии. Из лабораторных исследований всем больным выполняют общий анализ крови, биохимический анализ крови для оценки уровня щелочной фосфатазы и функции печени и почек. Другие исследования выполняются по показаниям (например, МРТ при наличии симптомов компрессии спинного мозга).

При исследовании биопсийного материала выявляются клетки Рид–Штернберга (крупные двухъядерные клетки) на фоне гетерогенного клеточного инфильтрата, включающего гистиоциты, лимфоциты, моноциты, плазматические клетки и эозинофилы. Классическая лимфома Ходжкина имеет 4 гистопатологических варианта (табл. 153–2); кроме того, отдельно выделяют нодулярную лимфому Ходжкина с лимфоидным преобладанием (НЛП ЛХ). Отличить лимфому Ходжкина от неходжкинских лимфом, а также классическую лимфому Ходжкина от НЛП ЛХ позволяет исследование отдельных антигенов на поверхности клеток Рид–Штернберга.

Результаты других методов исследования также могут отличаться от нормы, но они не имеют диагностического значения. В общем анализе крови может выявляться незначительный полиморфноядерный лейкоцитоз. Лимфоцитоз может встречаться и быть клинически значимой при распространенном стадии заболевания. Также у части больных отмечаются лимфоцитоз (до 20% больных) и тромбоцитоз. Анемия, чаще микроцитарная, обычно развивается при распространением заболевания. При выраженной анемии нарушение утилизации железа проявляется низким уровнем сывороточного железа, низкой железосвязывающей способностью эритроцитов и повышенным содержанием железа в костном мозге. Панцитопения обычно обусловлена опухолью инвазией костного мозга, чаще при лимфоме Ходжкина с лимфоидным истощением. Гиперспленизм может встречаться у
ТАБЛ. 153–2. ГИСТОПАТОЛОГИЧЕСКИЕ ВАРИАНТЫ ЛИМФОМЫ ХОДЖКИНА (КЛАССИФИКАЦИЯ ВОЗ)

<table>
<thead>
<tr>
<th>ГИСТОЛОГИЧЕСКИЙ ВАРИАНТ</th>
<th>МОРФОЛОГИЧЕСКАЯ КАРТИНА</th>
<th>ИММУНОФЕНОТИП ОПУХОЛЕВЫХ КЛЕТОК</th>
<th>ЧАСТОТА РАЗВИТИЯ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Классическая</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нодулярный склероз</td>
<td>Плотная фибриллярная ткань*, окружающая очаги ткани лимфомы Ходжкина</td>
<td>CD15+, CD30+, CD20–</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td>Умеренное количество клеток Рид–Штернберга на фоне смешанного клеточного инфильтрата</td>
<td>CD15+, CD30+, CD20–</td>
<td>25%</td>
</tr>
<tr>
<td>Богатая лимфоцитами</td>
<td>Небольшое количество клеток Рид–Штернберга Много B-клеток Выраженный склероз</td>
<td>CD15+, CD30+, CD20–</td>
<td>3%</td>
</tr>
<tr>
<td>Лимфоидное истощение</td>
<td>Больное количество клеток Рид–Штернберга Выраженный фиброз</td>
<td>CD15+, CD30+, CD20–</td>
<td>Редко</td>
</tr>
</tbody>
</table>

* Отмечается характерное двойное лучепреломление в поляризационном свете.

ЕМА – эпителиальный мембранный антиген.

ТАБЛ. 153–3. СИСТЕМА СТАДИРОВАНИЯ ЛИМФОМЫ ХОДЖКИНА И НЕХОДЖКИНСКИХ ЛИМФОМ ANN ARBOR В МОДИФИКАЦИИ COTSWOLD

<table>
<thead>
<tr>
<th>СТАДИЯ*</th>
<th>КРИТЕРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Поражение одной лимфатической зоны</td>
</tr>
<tr>
<td>II</td>
<td>Поражение нескольких лимфатических зон по одну сторону диафрагмы</td>
</tr>
<tr>
<td>III</td>
<td>Поражение лимфатических узлов и/или селезенки по обе стороны диафрагмы</td>
</tr>
<tr>
<td>IV</td>
<td>Экстранодальное поражение (напр., костного мозга, легких, печени)</td>
</tr>
</tbody>
</table>

* Критерий Е означает экстранодальное поражение органов, связанных с вовлеченными лимфоузлами (например, поражение медиастинальных лимфоузлов, лимфаденопатия в воротах легких и смежная инфильтрация ткани легкого классифицируется как IIE стадия). Стадии также разделяются на А и В (соответственно отсутствие или наличие симптомов интоксикации – потери веса, лихорадки, ночных потов). Симптомы интоксикации чаще встречаются при III и IV стадиях заболевания (20–30% больных). Приставка X означает наличие массивного опухолевого поражения, определяемого как размер пораженных лимфоузлов >10 см в диаметре или объемное образование размером более 1/3 от диаметра грудной клетки (по данным рентгенографии грудной клетки).

Отметка А при любой из стадий означает отсутствие симптомов интоксикации. Отметка В означает наличие хотя бы одного из симптомов интоксикации. Наличие симптомов интоксикации определяет худший ответ на лечение.
Глава 153. Лимфомы

Прогноз

При классической лимфоме Ходжкина отсутствие признаков заболевания в течение 5 лет после завершения лечения считается излечением. При применении химиотерапии с или без лучевой терапии излечение достигается у 70–80% больных. К факторам высокого риска рецидива относятся мужской пол, возраст >45 лет, множественные экстранодальные поражения, наличие симптомов интоксикации. Больные, не достигшие полной ремиссии или рецидивировавшие в течение первых 12 месяцев после завершения лечения, имеют неблагоприятный прогноз.

Лечение

■ Химиотерапия.
■ Лучевая терапия.
■ Хирургия.
■ В отдельных случаях – трансплантация гемопоэтических стволовых клеток.

Выбор варианта лечения сложен. В первую очередь он зависит от точного определения стадии заболевания. До начала лечения мужчинам детородного возраста нужно предлагать консервацию спермы, а женщинам – гормональную защиту яичников.

Больные I–II стадиями, как правило, получают режим полициклической терапии ABVD, включающий доксорубицин, блеомицин, винblastин и дакарбазин. Данный режим может применяться укороченным числом циклов в сочетании с лучевой терапией или большим числом циклов без лучевой терапии. Применение этого варианта лечения приводит к излечиванию до 80% больных. У больных с массивным опухолевым поражением средостения необходимо применение большего числа циклов лечения или более агрессивного режима полициклической терапии, при этом, как правило, применяется лучевая терапия.

У больных IIIA и IIIB стадиями как правило применяется полициклическая терапия по схеме ABVD без лучевой терапии. Частота излечения составляет 75–80% у больных IIIA стадией и 70–80% у больных IIIB стадий.

Применение режима ABVD у больных IVA и IVB стадиями приводит к достижению полной ремиссии в 70–80% случаев, 5-летняя безрецидивная выживаемость превышает 50%. При распространенных стадиях также эффективны такие препараты, как производные нитрозомочевины, ифосфамид, прокарбазин, цисплатин или карбоплатин, этопозид. Режимы полихимиотерапии, которые также применяются при распространенной лимфоме Ходжкина, включают в себя доксорубицин, циклофосфамид, винкристин, прокарбазин и преднизолон (режим BEACOPP) или мелхлорэтамин, доксорубицин, винblastин, винкристин, этопозид, блеомицин и преднизолон (режим Stanford V). Режим Stanford V также включает в себя лучевую терапию на зоны исходного поражения в качестве консолидации ремиссии.

Аутологичная трансплантация гемопоэтических стволовых клеток должна рассматриваться как вариант лечения у всех соматически сохраненных больных рецидивами или рефрактерными формами лимфомы Ходжкина, ответившими на терапию 2 линии.

Осложнения лечения. Применение химиотерапии, особенно таких препаратов, как мехлоретамин, винкристин, прокарбазин и преднизолон, увеличивает риск развития лейкоцитозов, которые обычно возникают через 3 года и более после химиотерапии. Как химиотерапия, так и лучевая терапия увеличивают риск развития злокачественных солидных новообразований (в т.ч. опухолей молочной железы, ЖКТ, легких, мягких тканей). Облучение средостения повышает риск развития коронарного атеросклероза. Риск развития рака молочной железы повышается у женщин через 7 лет после завершения лучевой терапии на прилежащие лимфатические зоны.

Наблюдение после завершения лечения. Для выявления рецидива заболевания выполняется стандартное обследование. Описание частоты и объема необходимых исследований представлено в табл. 153–4.

Ключевые пункты

■ Лимфома Ходжкина – лимфома В-клеточного происхождения.
■ Больные, как правило, обращаются с жалобами на безболезненное увеличение лимфоузлов, или со случайно выявленной при
Табл. 153-4. Наблюдение больных лимфомой Ходжкина после завершения лечения

<table>
<thead>
<tr>
<th>ОБСЛЕДОВАНИЕ</th>
<th>СРОКИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сбор анамнеза, физикальное обследование, общий и биохимический анализ крови</td>
<td>Первые 2 года – каждые 3–4 мес 3–5 лет – каждые 6 мес >5 лет – каждые 12 мес</td>
</tr>
<tr>
<td>Рентгенография грудной клетки при каждом посещении, если не выполняется КТ органов грудной клетки</td>
<td>Первые 2 года – каждые 3–4 мес 3–5 лет – каждые 6 мес</td>
</tr>
<tr>
<td>КТ органов грудной клетки</td>
<td>Первые 2 года – каждые 6–8 мес 3–5 лет – ежегодно</td>
</tr>
<tr>
<td>Уровень ТГГ</td>
<td>Каждые 6 мес после облучения шеи</td>
</tr>
<tr>
<td>Маммография</td>
<td>Еслилучевая терапия была начата в возрасте <30 лет – ежегодно, начиная через 7 лет после завершения лечебной терапии Если лучевая терапия была начата в возрасте ≥30 лет – ежегодно у женщин старше 37 лет</td>
</tr>
<tr>
<td>МРТ молочной железы</td>
<td>У женщин высокого риска (получивших лучевую терапию на средостение в возрасте до 30 лет) – чередуя каждые 6 мес с маммографией (одно обследование каждые 6 мес)</td>
</tr>
</tbody>
</table>

рентгенографии медиастинальной лимфаденопатии.

- При биопсии выявляются патогномоничные двухядерные клетки Рид–Штернберга.
- При применении полихимиотерапии, иногда в комбинации с лучевой терапией, удается добиться излечения у 70–80% больных.

Неходжкинские лимфомы

Неходжкинские лимфомы (НХЛ) представляют собой гетерогенную группу заболеваний, развивающихся по причине злокачественной моноклональной пролиферации лимфоидных клеток в лимфоцитулярной ткани в лимфоузлах, костном мозге, селезенке, печени и желудочно-кишечном тракте. Наиболее часто встречающийся симптом – периферическая лимфаденопатия. Однако встречаются случаи без лимфаденопатии, с наличием циркулирующих атипичных лимфоцитов.

По сравнению с лимфомой Ходжкина неходжкинские лимфомы чаще выявляются на распространенных стадиях. Диагноз, как правило, ставится на основании биопсии лимфатического узла и/или костного мозга. Трансплантация костного мозга обычно применяется в качестве терапии спасения у больных, не достигших полной ремиссии или в рецидиве.

НХЛ встречаются чаще, чем лимфома Ходжкина. В США это 6-я по распространенности злокачественная опухоль. Ежегодно диагностируется около 70 000 новых случаев НХЛ во всех возрастных группах. Однако НХЛ представляют собой не одно заболевание, а скорее группу новообразований лимфоцитарного происхождения. Частота развития увеличивается с возрастом (медиана возраста больных – 50 лет).

Этиология

Прочина развития НХЛ неизвестна, хотя, также как и при лейкозах, существует информация о важном значении инфицирования вирусами (в т.ч. вирусом Т-клеточного лейкоза/лимфомы человека, вирусом Эштейн – Барр, вирусом гепатита С, ВИЧ). К факторам риска относятся также иммунодефицитные состояния (вторичный иммунодефицит после трансплантации органов, СПИД, первичные иммунные заболевания, синдром Сикка, ревматоидный артрит), инфицированность Helicobacter pylori, воздействие отдельных химических соединений, предшествовавшее лечение по поводу лимфомы Ходжкина. НХЛ является второй по частоте развитии опухолью у ВИЧ-инфицированных больных, у отдельных больных СПИД манифестируется лимфомой. Характерной особенностью ВИЧ-ассоциированных лимфом является высокая частота реаранжировок гена C-myc.

Патофизиология

Большая часть НХЛ (80–85%) происходит из В-лимоноцитов; остальные – из Т-лимфоцитов или клеток естественных киллеров. Опухоль может развиваться как из зрелых клеток, так и из клеток-предшественников. Существует пересече-
ние между лейкозами и НХЛ, т.к. оба эти заболе-
вания представляют собой пролиферацию лим-
фоцитов или их предшественников. Более чем у
половины детей и у 20% взрослых больных НХЛ
может наблюдаться лейкозоподобная картина с
поражением костного мозга и лимфоцитозом
периферической крови. Дифференциальный
диагноз может быть затруднен. Как правило, у
больных лимфомой отмечается более выражен-
ное поражение лимфоузлов (особенно медиа-
стинальных), меньшее количество циркулирую-
щих опухолевых клеток и меньше количество
бластных клеток в костном мозге (<25%). Выра-
женная лейкемическая фаза редко встречается
при НХЛ, за исключением лимфомы Беркитта и
лимфобластной лимфомы.

Гипогаммаглобулинемия, обусловленная про-
грессирующим уменьшением продукции имму-
ноглобулинов, встречается у 15% больных, чаще
всего при хроническом лимфолейкозе, и может
являться фактором прогноза развития тяжелых
бактериальных инфекций.

Классификация

Патологическая классификация НХЛ продол-
жает расширяться, что отражает появление но-
вых данных о клеточном происхождении и био-
логии различных вариантов этой гетерогенной
группы заболеваний. Наиболее значимой счита-
ется классификация ВОЗ (табл. 153–5), т.к. она
учитывает иммунофенотип, генотип и цитогена-
тические характеристики опухоли, но существу-
ют и другие системы классификации (например,
классификация Lyon). Наиболее важными вари-
антами НХЛ, выделенными в последнее время
в классификации ВОЗ, являются мукозоассоци-

ТАБЛ. 153–5. ВАРИАНТЫ НЕХОДЖИНСКИХ ЛИМФОМ (КЛАССИФИКАЦИЯ ВОЗ)

<table>
<thead>
<tr>
<th>КЛЕТОЧНОЕ ПРОИСХОЖДЕНИЕ</th>
<th>ОПУХОЛЬ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опухоль из В-клеток-предшественниц</td>
<td>B-лимфобластная лимфома/лейкоз из клеток-предшественниц *</td>
</tr>
</tbody>
</table>
| Зрелые В-клетки | B-клеточный хронический лимфолейкоз/лимфома из малых лимфоцитов †
| | B-клеточный пролимфоцитарный лейкоз †
| | Лимфоплазмоцитарная лимфома †
| | Лимфома маргинальной зоны селезенки (± виллоидные лимфоциты) †
| | Волосатоклеточный лейкоз †
| | Множественная миелоплаэмоцитома †
| | Экстранодальная лимфома маргинальной зоны MALT-типа †
| | Нодальная лимфома маргинальной зоны (± монокоцитоидные В-клетки) †
| | Фолликулярная лимфома †
| | Лимфома из клеток мантити †
| | Диффузная крупноочаговая В-клеточная лимфома * (включая первичную медиастинальную крупноклеточную В-клеточную лимфому и первичную лимфому серозных полостей)
| | Лимфома Беркитта * |
| T-клетки-предшественники | T-лимфобластная лимфома/лейкоз из клеток-предшественниц * |
| Зрелые T-клетки | T-клеточный пролимфоцитарный лейкоз †
| | Т-клеточный лейкоз из больших гранулярных лейкоцитов *
| | NK-клеточный лейкоз *
| | Т-клеточная лимфома/лейкоз взрослых * (HTLV 1-позитивная)
| | Экстранодальная NK/Т-клеточная лимфома, назальный тип *
| | Т-клеточная лимфома, ассоциированная с энтеропатией *
| | Гепатоспленическая γ-δ T-клеточная лимфома *
| | Подкожная лимфоцитарная T-клеточная лимфома
| | Грибовидный микоз/синдром Сезари †
| | Анапластическая крупноочаговая лимфома, кожная
| | Анапластическая крупноочаговая лимфома, системная
| | Периферическая T-клеточная лимфома неуточненная
| | Ангиоиммунобластная T-клеточная лимфома |

*Агрессивная.
†Индолентная.
‡Индолентная, но со склонностью к быстрому прогрессированию.

HTLV – Вирус T-клеточного лейкоза человека 1 типа; MALT – мукозоассоциированная лимфома из клеток маргинальной зоны; NK – естественные киллеры; ± – с или без.
ированные лимфоидные опухоли (MALT), лимфома из клеток мантии (раньше – диффузная мелкоклеточная лимфома) и анапластическая крупноклеточная лимфома. Анапластическая крупноклеточная лимфома, в свою очередь, представляет собой генерогенное заболевание: 75% случаев имеют Т-клеточное происхождение, 15% – В-клеточное и 10% – неклассифицированные. Тем не менее, несмотря на разнообразие вариантов, за исключением отдельных Т-клеточных вариантов, лечение этой группы заболеваний проводится одинаково.

Лимфомы, как правило, подразделяются на индолентные и агрессивные. Индолентные лимфомы характеризуются медленным прогрессированием, чувствительностью к химиотерапии, но неизлечимы при применении стандартных терапевтических подходов. Агрессивные лимфомы отличаются быстрым прогрессированием, однако также чувствительны к терапии и могут быть излечены.

У детей почти всегда встречаются агрессивные НХЛ. Фолликулярная и другие индолентные лимфомы в детском возрасте развиваются крайне редко. При лечении агрессивных лимфом (лимфомы Беркитта, диффузной крупноклеточной В-клеточной лимфомы, лимфобластной лимфомы) требуется особое внимание уделять возможности поражения желудочно-кишечного тракта (особенно терминальных отделов подвздошной кишки), центральной нервной системы (требуется специфическая профилактика или лечение) и ряда других органов. Важным также является лечение нежелательных явлений, в т.ч. отсроченных, таких как вторичные злокачественные опухоли, кардиологические и респираторные осложнения, нарушения детородной функции и развития. В настоящее время много исследований посвящено решению этих проблем, так же как и проблем молекулярных нарушений и предикторов развития лимфом у детей.

Симптомы и признаки

У большинства больных заболевание манифестируется безболезненной лимфаденопатией. Увеличенные лимфоузлы эластичные, отдельные, с течением болезни сливающиеся в конгломераты. В отдельных случаях заболевание может локализоваться в одной зоне, однако чаще заболевание выявляется на распространенных стадиях. Увеличение медиастинальных и ретроперitoneальных лимфоузлов может вызывать симптомы сдавления различных органов. Экстраперitoneальное поражение может доминировать в клинической картине (например, поражение желудка может симулировать рак желудка, лимфома тонкой кишки может проявляться синдромом мальабсорбции, у ВИЧ-инфицированных больных первыми проявлениями НХЛ часто являются симптомы поражения ЦНС).

Поражение кожи и костей выявляется у 15% больных агрессивными лимфомами и 7% больных индолентными лимфомами. В отдельных случаях у больных с выраженным поражением грудной или брюшной полости развивается желудочный плееврит или асцит по причине обструкции лимфатических путей. Потеря веса, лихорадка, ночные поты, астения являются признаками распространенного заболевания. У больных также могут выявляться гепатомегалия и спленомегалия.

Гиперемия и отек лица и шеи из-за сдавления верхней полой вены (синдром сдавления верхней полой вены) чаще встречается при НХЛ, чем при лимфоме Ходжкина. Увеличенные ретроперitoneальные лимфоузлы и лимфоузлы малого таза могут сдавливать мочеточники, что может приводить к нарушению оттока мочи и вызывать вторичную почечную недостаточность.

Анемия в момент диагностики выявляется у 33% больных, но с течением болезни развивается в большинстве случаев. Она может быть вызвана кровотечением при лимфоме ЖКТ, с или без тромбоцитопении, гемолизом при гиперспленизме с развитием гемолитической анемии с положительной пробой Кумбса, опухолевой инфильтрацией костного мозга или подавлением работы костного мозга химиотерапией или лучевой терапией.

Т-клеточная лимфома/лейкоз взрослых (ТКЛ-ЛВ, ассоциированная с вирусом Т-клеточного лейкоза человека 1 типа [HTLV-1]), имеет фульминантное клиническое течение с образованием кожных инфильтратов, лимфаденопатий, гепатоспленомегалией и развитием лейкоза.
Опухолевый субстрат составляют Т-клетки со скрученными ядрами. Часто развивается гиперкальциемия, обусловленная гуморальными факторами.

Анапластическая крупноклеточная лимфома характеризуется быстрым развитием поражения кожи, лимфатических узлов и внутренних органов. Дифференциальная диагностика при этом заболевании должна проводиться с лимфомой Ходжкина и с недифференцированной карциномой.

Диагностика

- Рентгенография грудной клетки.
- КТ органов грудной и брюшной полости и малого таза и/или ПЭТ-КТ.
- Общий анализ крови, биохимический анализ крови: щелочная фосфатаза, ЛДГ, показатели функции печени, альбумин, кальций, мочевина, креатинин, электролиты, мочевая кислота.
- Исследование на ВИЧ, вирусы гепатитов В и С при ТКЛЛВ – HTLV-1.
- Биопсия лимфоузлов и костного мозга.
- При наличии неврологических симптомов – МРТ.

Как и при лимфоме Ходжкина, подозрение на НХЛ возникает при развитии безболезненного увеличения лимфоузлов или при выявлении медиастинальной лимфаденопатии при рентгенографии грудной клетки. Другими причинами развития безболезненной лимфаденопатии могут быть инфекционный мононуклеоз, токсоплазмоз, цитомегаловирусная инфекция, СПИД и лейкоз. Сходные рентгенологические симптомы могут выявляться при раке легких, саркоидозе и туберкулезе. Реже подозрение на НХЛ может возникать при увеличении количества лимфоцитов в периферической крови или при развитии неспецифических симптомов. В таком случае дифференциальная диагностика должна проводиться с лейкозом, инфицированием вирусом Эштейна – Барр или синдромом Дункана (Х-сцепленным лимфопrolиферативным синдромом).

Биопсия лимфоузлов выполняется при подтверждении лимфаденопатии при рентгенографии грудной клетки, КТ или ПЭТ. В случаях, когда увеличены только медиастинальные лимфоузлы, необходимо выполнение биопсии под контролем КТ или медиастиноскопии. Лабораторное обследование, как правило, включает общий анализ крови, биохимический анализ крови на ЩФ, маркеры функциональной активности печени и почек, ЛДГ и мочевую кислоту. Выполнение других исследований зависит от клинических проявлений и находок (например, МРТ при наличии симптомов сдавления спинного мозга или неврологических симптомах).

Гистологические критерии установления диагноза НХЛ при исследовании биопсийного материала включают разрушение нормальной архитектоники лимфоузлов, инвазию капсулы и прилежащей жировой ткани опухолевыми клетками. Иммунофенотипическое исследование, проводимое с целью определения клеточного происхождения, чрезвычайно важно для уточнения варианта НХЛ, от которого зависит прогноз и тактика лечения. Это исследование также может выполняться на клетках периферической крови. Наличие общего лейкоцитарного антигена CD45, выявленное при помощи иммунопероксидазного теста, исключает диагноз метастатического рака, что важно при дифференциальной диагностике «недифференцированного» рака. Исследование общего лейкоцитарного антигена, большинства поверхностных мембранных маркеров и реаранжировки генов (для определения Т- или В-клеточной клональности) может выполняться на фиксированной ткани. Для проведения цитогенетического исследования и проточной цитометрии необходима свежая ткань.

Стадирование. Хотя в отдельных случаях НХЛ выявляются на ранних стадиях, чаще всего в момент диагноза заболевание диссеминировано. Необходимые для стадирования исследования включают КТ органов грудной и брюшной полости и малого таза, ПЭТ и биопсию костного мозга. Стадирование НХЛ (табл. 153–3) такое же, как и при лимфоме Ходжкина. Оно основано на данных клинического и патоморфологического обследования.

Прогноз

У больных Т-клеточными лимфомами прогноз, как правило, хуже, чем при В-клеточных
опухолях, хотя новые интенсивные режимы лечения нивелируют это различие. Прогноз каждого из вариантов НХЛ различен, что связано с различиями в биологии опухолевых клеток.

Выживаемость зависит также и от других факторов. Международный прогностический индекс (МПИ) часто применяется при агрессивных лимфомах. Он включает 5 факторов риска:

- возраст >60;
- плохое общее состояние больного (может быть измерено по шкале Восточной объединенной онкологической группы [ECOG]);
- повышение ЛДГ;
- >1 экстранодального очага поражения;
- III–IV стадии заболевания.

Прогноз ухудшается с увеличением количества факторов риска. Выживаемость, зависящая от МПИ, улучшилась после добавления ритуксимаба к стандартной химиотерапии. У больных высокого риска (4–5 факторов риска) на сегодняшний день 5-летняя общая выживаемость составляет 50%. У больных без факторов риска доля излечиваемости очень высока. Модифицированные варианты МПИ используются при фолликулярной лимфоме (ФЛ МПИ) и диффузной крупноклеточной В-клеточной лимфоме (исправленный МПИ [иМПИ]).

Лечение

- Химиотерапия, лучевая терапия или их комбинация.
- Анти-CD20 моноклональное антитело с или без химиотерапии.
- В отдельных случаях — трансплантация гемопоэтических стволовых клеток.

Лечение значительного различается в зависимости от клеточного состава опухоли. Количество вариантов лечения слишком велико для детального обсуждения. Определенные обобщения могут быть сделаны относительно локализованных и генерализованных стадий заболевания, а также для индольных и агрессивных лимфом. Отдельно обсуждаются лимфома Беркитта и грибовидный микоз.

Локализованные стадии (стадии I и II). Индольные лимфомы редко выявляются на локализованных стадиях. Однако при выявлении ранних стадий длительный контроль над заболеванием может быть достигнут при применении лучевой терапии на зону поражения. Тем не менее рецидивы случаются и более чем через 10 лет после облучения.

Агрессивные лимфомы выявляются на ранних стадиях почти у половины больных. В этих случаях комбинированная химиотерапия может привести к полному излечению. Больным лимфобластными лимфомами или лимфомой Беркитта даже в случае выявления на ранних стадиях необходимо проведение интенсивной комбинированной химиотерапии с профилактикой поражения ЦНС. Лечение может включать поддерживающую терапию, однако целью лечения также является излечение больного.

Распространенные стадии (стадии III и IV). При индольных лимфомах лечение может быть очень различным, от тактики «наблюдай и жди» или монотерапии специфичным к В-лимфоцитам анти-CD20 моноклональным антителом ритуксимабом до комбинированной поликомпонентной иммунохимиотерапии. Выбор тактики лечения зависит от возраста и общего состояния больного, распространенности опухолевого процесса, наличия массивного опухолевого поражения, гистологии и ожидаемых результатов лечения.

Стандартным режимом лечения агрессивных В-клеточных лимфом (например, диффузной В-клеточной крупноклеточной лимфомы) является комбинация ритуксимаба, циклофосфамида, доксорубицина, винкристина и преднизолона (R-CHOP). Полная регрессия заболевания достигается у ≥70% больных в зависимости от МПИ. Среди больных, у которых был достигнут полный ответ, излечить удается более 70%, рецидивы более чем через 2 года после завершения лечения отмечаются редко.

После появления режима R-CHOP результаты лечения больных агрессивными лимфомами улучшились, поэтому аутологичная трансплантация, как правило, применяется у больных рецидивами и рефрактерными формами агрессивных лимфом, а также у отдельных молодых больных лимфомой из клеток мантии и агрессивными Т-клеточными лимфомами.

Рецидивы лимфом. Терапией выбора почти во всех случаях рецидивов заболевания...
Глава 153. Лимфомы

1761

Лимфомы

1761

Лимфому Беркитта

Лимфома Беркитта – B-клеточная лимфома, возникающая преимущественно у детей. Выделяют эндемическую (африкансую), спорадическую (неафрикансую) и связанную с иммунодефицитом формы.

Лимфома Беркитта эндемична в Центральной Африке и составляет 30% лимфом у детей в США. Эндемическая форма, как правило, манифестируется увеличением нижней челюсти и костей лицевого черепа. При спорадической лимфоме Беркитта чаще поражаются внутрибрюшные лимфоузлы, в основном в области брыжейки тонкой кишки и илеоцекальной складки. Опухоль может вызывать кишечную непроходимость. Кроме того, могут поражаться почки, яичники и молочные железы. У взрослых заболевание часто выявляется генерализованным, с массивным опухолевым поражением, включающим печень, селезенку и костный мозг. Часто поражается ЦНС.

Лимфома Беркитта является наиболее быстро растущей опухолью человека. При патоморфологическом исследовании определяется высокая пролиферативная активность, моноклональная пролиферация B-клеток, картина «звездного неба» – макрофаги, поглощающие апоптотические лимфоциты. Характерно наличие транслокации гена C-myc на 8 хромосоме и тяжелой цепи иммуноглобулина на 14 хромосоме. Эндемическая форма заболевания тесно связана с вирусом Эпштейна – Барр, однако до сих пор не дока-
Раздел 12. Гематология и онкология

зано, имеет ли данный вирус этиологическую роль. Лимфома Беркитта часто выявляется у ВИЧ-инфицированных больных.

Диагностика
Диагноз основывается на результатах биопсии лимфоузла или другого очага опухолевого поражения. В редких случаях для диагностики необходимо выполнение лапаротомии. Для стадирования требуется выполнение КТ органов грудной и брюшной полости и малого таза, биопсия костного мозга, цитологическое исследование ликвора и ПЭТ. В связи со стремительным ростом опухоли все обследования необходимо выполнять в максимально короткие сроки.

Лечение
Интенсивная химиотерапия.
В связи с быстрым ростом опухоли лечение должно быть начато в максимально короткие сроки. Применение интенсивного альтернирующего режима, включающего циклофосфамид, винкристин, доксорубицин, метотрексат, ифосфамид, этопозид и цитарецин (CODOX-M/IVAC) плюс ритуксимаб, позволяет излечить >90% детей и взрослых. С успехом могут применяться и другие режимы лечения, такие как ритуксимаб, этопозид, преднизолон, винкристин и доксорубицин (R-EPOCH) или ритуксимаб, циклофосфамид, винкристин, доксорубицин и дексаметазон (R-Hyper CVAD). Обязательно проведение интратекальной профилактики поражения ЦНС. При проведении лечения часто развивается тумор-лизис синдром, поэтому больные обязательно должны получать внутривенную гидратацию, аллопуринол, часто с расбуцилазой, защелачивание, особое внимание должно уделяться концентрации электролитов (особенно калия и кальция).

В случае удаления опухоли до начала лекарственного лечения (например, из-за развития кишечной непроходимости) проведение агрессивной химиотерапии тем не менее обязательно. Терапия рецидивов, как правило, неэффективна, что еще раз подчеркивает важность проведения максимально агрессивной терапии первой линии.

ГРИБОВИДНЫЙ МИКОЗ
Грибовидный микоз — это Т-клеточная лимфома с хроническим течением, поражающая преимущественно кожу и редко внутренние органы.

Грибовидный микоз встречается реже, чем лимфома Ходжкина или неходжкинские лимфомы. В отличие от большинства других лимфом на ранних стадиях она проявляется хронической зудящей сыпью, которую трудно диагностировать. В начале заболевание фокально, но в дальнейшем может поражать большую часть кожного покрова. Сыпь вначале имеет форму папул и бляшек, но могут развиваться также узлы и изъязвления. Системное поражение лимфоузлов печени, селезенки, легких развивается на поздних этапах заболевания и может сопровождаться лихорадкой, ночнойгем, потерей веса.

Диагностика
Биопсия кожи.
Для стадирования — биопсия костного мозга, КТ органов грудной и брюшной полости и малого таза.
Диагноз основан на результатах биопсии кожи, однако на ранних этапах заболевания гистологическое заключение может быть неоднозначным из-за малого количества опухолевых клеток. Опухолевые клетки представляют собой зрелые Т-клетки (Т4+, Т11+, Т12+).

Характерно наличие микроабсцессов Потире в эпидермисе. В отдельных случаях развивается лейкемическая форма заболевания — синдром Сезари, характеризующийся наличием опухолевых клеток со скрученными ядрами в периферической крови.

После подтверждения диагноза грибовидного микоза стадия (табл. 153-3) устанавливается по данным КТ органов грудной и брюшной полости и малого таза и биопсии костного мозга. При подозрении на поражение внутренних органов может выполняться ПЭТ.

Прогноз
Большинство больных старше >50 лет, ожидаемая средняя продолжительность жизни
Глава 154. Плазмоклеточные заболевания

после установки диагноза 7–10 лет даже без лечения. Однако выживаемость значительно зависит от стадии заболевания на момент постановки диагноза. Ожидаемая продолжительность жизни больных, получавших лечение по поводу IA стадии заболевания, не отличается от таковой в общей популяции. МедIANA выживаемости больных II В стадией составляет 3 года, III стадией – 4–6 лет, IVA или IVB стадиями – <1,5 года.

Лечение

■ Лучевая терапия, топическая химио- или гормонотерапия, фототерапия.
■ В отдельных случаях – системная химиотерапия.

Эффективной является комбинация электронно-лучевой терапии, при которой большая часть энергии аборбируется 5–10 мм ткани с азотистым ипритом. Для лечения бляшек может применяться солнечный свет и топические кортикостероиды. Системная терапия аглирующими агентами и антагонистами фолевой кислоты обеспечивает временную регрессию опухоли, но системное лечение, как правило, применяется при неэффективности других методов лечения, при рецидивах либо у больных с экстраанодальным или внекожным поражением. Умеренной эффективностью обладает экстракорпоральная фотохимиотерапия. В исследованиях была показана эффективность антиметаболитов флударабина и кладрибина.

Плазмоклеточные заболевания

(диспротеинемии; моноклональные гаммопатии; парапротеинемии, плазмоклеточные дискразии)

Плазмоклеточные заболевания являются разнородной группой заболеваний неизвестной этиологии, которые характеризуются диспропорциональной пролиферацией одного В-клеточного клона и наличием структурно и электрофоретически гомогенных (моноклональных) иммуноглобулинов или полипептидных субъединиц в сыворотке крови и/или в моче.

Патофизиология

После синтеза недифференцированных В-клеток в костном мозге они проникают в периферическую лимфоидную ткань (лимфатические узлы, селезенка, кишечник, пейеровы бляшки). Здесь происходит их дифференцировка в клетки, каждая из которых способна осуществлять иммунный ответ на ограниченное количество антигенов. После контакта с соответствующим антигеном некоторые В-клетки претерпевают клональную пролиферацию и превращаются в плазматические клетки. Каждая клональная линия плазматических клеток принимает участие в синтезе одного специфического иммуноглобулина (антитела), который состоит из 2 идентичных тяжелых цепей (гамма [γ], мю [μ], альфа [α], дельта [δ] или эпсилон [ε]) и 2 идентичных легких цепей (каппа [κ] или лямбда [λ]). В норме существует избыток легких цепей, поэтому небольшое количество свободных поликлональных легких цепей экскретируется с мочой (≤40 мг/24 часа).

Этиология плазмоклеточных заболеваний остается неустановленной, они характеризуются диспропорциональной пролиферацией одного клона. В результате наблюдается повышение сывороточного уровня такого продукта, как моноклональный иммуноглобулиновый белок (М-протеин).

М-протеины могут являться комбинацией тяжелых и легких цепей или состоять только из цепей одного типа. В некоторых случаях они обладают активностью антител, вызывая аутоиммунное повреждение внутренних органов, особенно почек. С началом синтеза М-протеинов продукции других иммуноглобулинов, как правило, снижается, что может послужить причиной нарушения иммунитета. М-протеины могут оседать на поверхности тромбоцитов,
инактивировать факторы свертывания крови, повышать ее вязкость, вызывать кровотечения посредством других механизмов. М-протеины также могут способствовать развитию вторичного амилоидоза. Клональные клетки способны инфильтрировать костный матрикс или костный мозг, что сопровождается остеопорозом, гиперкальциемией, анемией и панцитопенией.

Течение плазмоклеточных заболеваний может быть вариабельным: от бессимптомных форм (обнаруживается только патологический белок) до прогрессирующих опухолевых форм (к примеру, миеломной болезни, табл. 154–1). Реже транзиторные плазмоклеточные состояния наблюдаются у пациентов с лекарственной гиперчувствительностью (к сульфаниламидам, фенитоину, пенициллину), после перенесенных вирусных инфекций, операций на сердце, трансплантаций органов.

Подозрение на плазмоклеточные заболевания может возникать при наличии клинических проявлений. Также установлению диагноза может предшествовать случайное выявление ане-мии, повышенного уровня сывороточного белка или протеинурии. Следующий этап диагностики заключается в выполнении электрофореза белков, содержащихся в моче. При электрофорезе определяется М-протеин, который впоследствии подвергается иммунофиксационному электрофорезу для идентификации классов тяжелых и легких цепей.

БОЛЕЗНИ ТЯЖЕЛЫХ ЦЕПЕЙ

Болезни тяжелых цепей являются неопластическими плазмоклеточными заболеваниями, которые характеризуются гиперпродукцией тяжелых цепей моноклональных иммуноглобулинов. Симптомы, диагностика

ТАБЛ. 154–1. КЛАССИФИКАЦИЯ ПЛАЗМОКЛЕТОЧНЫХ ЗАБОЛЕВАНИЙ

<table>
<thead>
<tr>
<th>СИМПТОМЫ</th>
<th>ОПИСАНИЕ</th>
<th>ПРИМЕРЫ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Моноклональная гаммапатия неясного генеза<sup>*</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бессимптомное течение, обычно не прогрессирует</td>
<td>Ассоциирована с нелимфометрикальный опухолями</td>
<td>Злокачественные опухоли молочной железы, билиарной системы, желудочно-кишечного тракта, почек и предстательной железы</td>
</tr>
<tr>
<td>Возникает на фоне внешнего здоровья</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ассоциирована с хроническими воспалительными и инфекционными заболеваниями</td>
<td>Хронический холецистит, остеомиелит, пиелонефрит, РА, гемохроматоз</td>
</tr>
<tr>
<td></td>
<td>Ассоциирована с другими заболеваниями</td>
<td>Наследственная гиперхолестеринемия, болезнь Гоше, саркома Капоши, миеломная гиперволемия, болезни печени, миастения гравис, пернициозная анемия, тиреотоксикоз</td>
</tr>
</tbody>
</table>

Злокачественные плазмоклеточные заболевания		
Симптомное прогрессирующее течение	Избыточная продукция IgM	Макроглобулинемия
	Чаще всего IgG, IgA или только легкие цепи (белок Бенс-Джонса)	Множественная миелома
	Обычно легкие цепи (белок Бенс-Джонсса), но иногда встречаются интактные молекулы иммуноглобулинов (IgG, IgA, IgM, IgD)	Ненаследственный первичный системный амилоидоз
Болезни тяжелых цепей	Болезнь тяжелых цепей IgG (γ-цепи) (иногда носит доброкачественный характер)	Болезнь тяжелых цепей IgA (α-цепи)
	Болезнь тяжелых цепей IgM (µ-цепи)	Болезнь тяжелых цепей IgD (δ-цепи)

| **Транзиторные плазмоклеточные состояния** | | |
| | Ассоциированы с лекарственной гиперчувствительностью, перенесенными вирусными инфекциями, операциями на сердце, трансплантацией органов | Гиперчувствительность к сульфаниламиду, фенотиазину, пенициллину |

[*]Частота зависит от возраста.
и лечение варьируют в зависимости от конкретного заболевания.

Болезни тяжелых цепей являются плазмоклеточными заболеваниями, которые обычно носят злокачественный характер. При большинстве плазмоклеточных заболеваний образуются М-протеины, аналогичные по структуре нормальным молекулам антител. Напротив, при болезнях тяжелых цепей синтезируются неполные моноклональные иммуноглобулины (истинные парапротеины). Они состоят только из компонентов тяжелых цепей (α, γ, μ или δ), легкие цепи отсутствуют (болезнь ε-тяжелых цепей не описана). Большая часть белков тяжелых цепей является фрагментами их нормальных копий с делецией внутренних участков различной длины; эти делеции относятся к структурным мутациям. Клиническая картина в большей степени напоминает лимфому, чем множественную миелому. Болезнь тяжелых цепей необходимо подозревать у пациентов с манифестацией клинических симптомов, характерных для лимфопролиферативных заболеваний.

БОЛЕЗНЬ ТЯЖЕЛЫХ ЦЕПЕЙ IGA
(болезнь α-цепей)

Болезнь тяжелых цепей IgA является наиболее распространенной формой болезни тяжелых цепей и подобна средиземноморской лимфоме (иммунопролиферативная болезнь тонкой кишки).

Болезнь тяжелых цепей IgA обычно возникает в возрасте 10–30 лет и географически скоцентрирована на Ближнем Востоке. Причиной может быть неадекватный иммунный ответ на паразитарную инвазию или инфекцию. Обычно присутствует атрофия ворсинок и плазмоклеточная инфилтрация слизистой оболочки тонкой кишки, иногда может наблюдаться инфильтрация мезентериальных лимфатических узлов. Периферические лимфоузлы, кожный мозг, печень и селезенка обычно интактны. Формы, поражающие респираторный тракт, регистрируются редко. Остеолитические поражения нехарактерны. Почти во всех случаях наблюдаются признаки диффузной аденоматозной лимфомы и мальабсорбции. В половине случаев электрофорез сывороточных белков не выявляет патологии. Однако чаще наблюдается повышение α2 и β-фракций или снижение γ-фракции. Диагностика основана на выявлении моноклональных α-цепей при иммунофиксационном электрофорезе. Иногда их компоненты можно обнаружить в концентрированной моче. Если результат исследования сыворотки крови и мочи отрицательный, необходима биопсия. Инфильтрация кишечника может быть пломоматозной и не иметь явных признаков малигнизации. Белок Бенс-Джонса в моче отсутствует.

Течение заболевания отличается высокой вариабельностью: некоторые пациенты умирают через 1–2 года, у других наблюдается длительная ремиссия, в особенности после лечения кортикостероидами, цитотоксическими препаратами и антибиотиками широкого спектра.

БОЛЕЗНЬ ТЯЖЕЛЫХ ЦЕПЕЙ IGG
(болезнь γ-цепей)

Болезнь тяжелых цепей IgG, как правило, имеет агрессивный характер, сходный со злокачественной лимфомой, однако в редких случаях она может протекать бессимптомно и доброкачественно.

Болезнь тяжелых цепей IgG чаще всего возникает у мужчин старшего возраста, но может встречаться и у детей. К ассоциированным хроническим заболеваниям относятся RA, синдром Шегрена, СКВ, туберкулез, миастения гравис, гиперэозинофильный синдром, аутоиммунная гемолитическая анемия, тиреоидит. Наблюдается снижение уровня нормальных иммуноглобулинов. Литические поражения костей нехарактерны. Иногда развивается амилодоз.

Манифестация заболевания чаще всего включает в себя следующие признаки: лимфаденопатия, гепатоспленомегалия, лихорадка, рецидивирующие инфекции. У четверти пациентов наблюдается отек неба.

В ОАК могут определяться анемия, лейкопения, тромбоцитопения, эозинофилия, наличие циркулирующих атипичных лимфоцитов или плазматических клеток. Диагностика основана на выявлении фрагментов свободных моно-
клональных цепей IgG в сыворотке крови и моче методом иммунофиксации. У половины пациентов содержание моноклонального компонента (чаще широкого и гетерогенного) в сыворотке крови составляет >1 г/дл, в половине случаев возникает протеинурия >1 г/24 часа. Хотя белки тяжелых цепей могут относиться к любому подклассу, чаще всего встречаются иммуноглобулины G3. Биопсия костного мозга или лимфатических узлов выполняется в том случае, если другие методы неинформативны, при этом выявляются различные гистопатологические изменения.

Медиана выживаемости при данном агрессивном заболевании составляет около 1 года. Летальный исход обычно обусловлен бактериальной инфекцией или прогрессированием злокачественного процесса. Применение алкилирующих препаратов, винкретина, кортикостероидов и лучевой терапии может привести к временной ремиссии.

БОЛЕЗНЬ ТЯЖЕЛЫХ ЦЕПЕЙ IgM
(болезнь μ-цепей)

Болезнь тяжелых цепей IgM встречается редко, ее клиническая картина сходна с хроническим лимфолейкозом или другими лимфопролиферативными заболеваниями.

Болезнь тяжелых цепей IgM чаще всего поражает людей старше 50 лет. Характерно поражение висцеральных органов (селезенка, печень, абдоминальные лимфатические узлы), которое, однако, не сопровождается распространенной периферической лимфаденопатией. Могут наблюдаются патологические переломы и амилоидоз. Электрофорез сывороточных белков обычно не выявляет патологии, может наблюдаться гипогаммаглобулинемия. Диагностика основана на исследовании костного мозга и выявлении M-протеина. Лечение включает плазмаферез (при гипервязкости крови), а также системную терапию (алкилирующие препараты, винкретин, кортикостероиды, нуклеозидные аналоги, моноклональные антитела).

Макроглобулинемия, редкое злокачественное В-клеточное заболевание, клинически больше напоминает лимфоматозную патологию, чем миелому и другие виды плазмоцитом. Этиология неизвестна. Мужчины болеют чаще женщин; медиана возраста составляет 65 лет.

Макроглобулинемия является вторым после множественной миеломы злокачественным заболеванием, ассоциированным с моноклональной гаммапатией. Избыточное количество IgM также может накапливаться и при других заболеваниях, вызывающих клинические проявления, аналогичные макроглобулинемии. К примеру, у 5% пациентов с неходжкинскими лимфомами в сыворотке крови присутствует небольшое количество компонентов моноклональных IgM; это состояние называется макроглобулинемической лимфомой. Кроме того, моноклональный IgM в редких случаях может присутствовать у пациентов с хроническим лимфолейкозом или другими лимфопролиферативными заболеваниями.
Клинические проявления макроглобулинемии могут быть обусловлены большим количеством высокомолекулярных белков, представляющих собой моноклональные IgM, циркулирующие в плазме; однако у большей части пациентов симптомы, связанные с высоким уровнем IgM, не развиваются. Некоторые из данных белков относятся к антителам, направленным против аутологичных IgG (ревматоидный фактор) или I-антигенов (холодовые агглютинины). Около 10% антител являются криоглобулинами. У 5% пациентов развивается вторичный амилоидоз.

Симптомы и признаки

В большинстве случаев заболевание протекает бессимптомно, однако у многих пациентов возникают клинические проявления, характерные для синдрома гипервязкости крови: утомляемость, слабость, кровоточивость кожи и слизистых, нарушения зрения, головные боли, признаки периферической нейропатии, другие неврологические нарушения. Повышение объема плазмы может способствовать развитию сердечной недостаточности. Могут возникать признаки холодовой чувствительности, синдром Рейно, рецидивирующие бактериальные инфекции.

При клиническом обследовании можно выявить наличие лимфаденопатии, гепатоспленомегалии и пурпуры. Для синдрома гипервязкости характерна выраженная гиперемия вен сетчатки в сочетании с их локальным сужением, в результате чего сосуд напоминает «связку сосисок». На поздних стадиях на сетчатке можно обнаружить кровоизлияния, экссудаты, микроаневризмы, отек соска зрительного нерва.

Диагностика

- ОАК + количество тромбоцитов, эритроцитарные индексы, мазок периферической крови.
- Иммунофикационный электрофорез белков сыворотки крови и мочи.
- Анализ сыворотки крови на вязкость.
- Исследование костного мозга.
- В некоторых случаях может потребоваться биопсия лимфатических узлов.

Макроглобулинемию необходимо подозревать у пациентов с признаками гипервязкости крови или другими типичными симптомами, в частности при наличии анемии. Тем не менее диагноз часто устанавливается случайно, если при иммунофикационном электрофорезе выявляется M-протеин, соответствующий IgM. В рамках лабораторного обследования проводятся стандартные тесты, используемые для диагностики плазмоклеточных заболеваний (см. гл. «Множественная миелома»), а также измерение содержания криоглобулинов, ревматоидного фактора, холодовых агглютининов, коагулограмма, прямая проба Кумбса.

Характерно наличие нормоцитарной нормокромной анемии с формированием «монетных столбиков» эритроцитов, резкое повышение СОЭ. В некоторых случаях наблюдается лейкопения с относительным лимфоцитозом, тромбоцитопения. Могут присутствовать криоглобулины, ревматоидный фактор, холодовые агглютинины. При наличии холодовых агглютининов прямая проба Кумбса, как правило, положительна. Могут наблюдаться различные нарушения процесса коагуляции и функции тромбоцитов. При наличии криоглобулинемии или выраженной гипервязкости стандартные анализы крови могут показывать ложные результаты. У половины пациентов снижен уровень нормальных иммуноглобулинов.

Электрофорез с иммунофикацией концентрированной мочи часто выявляет наличие моноклональных легких цепей (обычно κ), однако массивная протеинурия Бенс-Джонса нехарактерна. При исследовании костного мозга можно обнаружить повышение (до различной степени) содержания плазматических клеток, лимфоцитов, плазмоцитоидных лимфоцитов и тучных клеток. Периодически в лимфоидных клетках могут встречаться шифф-положительные включения. При нормальной миелограмме выполняется биопсия лимфоузла, в ходе которой часто выявляются признаки, которые можно интерпретировать как наличие диффузной, хорошо дифференцированной или лимфолазмоцитарной лимфомы. При подозрении на наличие гипервязкости выполняется анализ сыворотки крови, при данном заболевании вязкость обычно составляет >4,0 (норма 1,4–1,8).
Лечение

■ Плазмаферез (при наличии гипервязкости).
■ Алкилирующие препараты, нуклеозидные аналоги, моноклональные антитела (ритуксимаб) или комбинированная терапия.
■ Возможно назначение бортезомиба, талидомида или леналидомида.

Течение заболевания отличается вариабельностью, медиана выживаемости составляет 7–10 лет. Факторами укорочения продолжительности жизни являются возраст >60 лет, анемия, криоглобулинемия.

Лечение часто продолжается в течение нескольких лет. При наличии гипервязкости основным методом лечения является плазмаферез, применение которого вызывает быстрое обратное развитие проявлений кровоточивости и неврологической симптоматики. Часто требуются повторные процедуры.

В качестве паллиативной терапии может быть показано долгосрочное применение пероральных алкилирующих препаратов, однако это может сопровождаться токсическим действием на костный мозг. У большинства впервые выявленных пациентов наблюдается ответ на лечение нуклеозидными аналогами (флуорарабин и 2-хлородезоксиаденозин). Применение ритуксимаба может способствовать уменьшению массы опухоли путем подавления нормального гемопоэза. Тем не менее в течение первых нескольких месяцев лечения может появиться уровень IgM, что требует проведения плазмафереза. При данном виде злокачественной опухоли также эффективно применение протеасомного ингибитора бортезомиба и иммуномодулирующих препаратов, таких как талидомида и леналидомида.

МОНОКЛОНАЛЬНАЯ ГАММА-ПАТИЯ НЕЯСНОГО ГЕНЕЗА

Моноклональная гаммапатия неясного генеза (МГНГ) характеризуется продукцией M-протеина неопухолевыми плазматическими клетками при отсутствии других признаков, типичных для множественной миеломы.

Частота встречаемости МГНГ повышается с возрастом (от 1% среди лиц до 25 лет до >5% среди лиц старше 70 лет. МГНГ может быть ассоциирована с другими заболеваниями (табл. 154–1), при которых антитела синтезируют большие количества M-протеинов в ответ на длительные антигенные стимулы.

МГНГ обычно протекает бессимптомно, однако в некоторых случаях может наблюдаться периферическая нейропатия. Хотя чаще всего заболевание изначально имеет доброкачественный характер, наблюдается до 25% случаев (1% в год) его прогрессирования с развитием миеломы или B-клеточного заболевания, к примеру макроглобулинемии, амилоидоза или лимфомы.

Подозрение на данное заболевание, как правило, возникает при случайном выявлении M-протеина в крови или моче при обычном обследовании. Характерен низкий уровень M-протеина в сыворотке крови (<3 г/дл) или в моче (<300 мг/24 часа). Дифференциальная диагностика с другими плазмоклеточными заболеваниями основана на сохранении относительно стабильного уровня M-протеина, отсутствии литических костных поражений, анемии, почечной дисфункции. Тем не менее у данных пациентов наблюдается значительная потеря костной ткани и высокий риск переломов. Таким образом, начальными этапами диагностики должны быть рентгенологическое исследование скелета и костная денситометрия. Для костного мозга характерен легкий плазмоцитоз (<10% ядросодержащих клеток).

Официально рекомендованное противоопухоловое лечение отсутствует. Тем не менее современные исследования свидетельствуют о том, что у пациентов с МГНГ, ассоциированной с потерей костной ткани (остеопения или остеопороз), эффективным может быть применение бисфосфонатов. Оценка скорости прогрессирования заболевания должна проводиться каждые 6–12 месяцев и включать в себя электрофорез белков сыворотки крови и мочи.

МНОЖЕСТВЕННАЯ МИЕЛОМА

(миеломатоз; плазмоклеточная миелома)

Множественная миелома является злокачественной плазмоклеточной опухолью, продуцирующей моно-
клональные иммуноглобулины, которые внедряются в прилежащую костную ткань и разрушают ее. К характерным проявлениям относятся боли в костях, почечная недостаточность, гиперкальциемия, анемия, рецидивирующие инфекции. Диагностика основана на выявлении М-протеина (иногда присутствует в моче, никогда — в сыворотке крови) и характерных костных поражений, протеинурии легких цепей, избыточного количества плазматических клеток в костном мозге. Обычно требуется биопсия костного мозга. Специфическое лечение включает в себя традиционную химиотерапию в сочетании с бортезомибом, леналидомидом, талидомидом, кортикостероидами, мелфаланом (высокие дозы), в последующем выполняется трансплантация аутологичных стволовых клеток периферической крови.

Распространенность множественной миеломы составляет 2–4 случая/100 000 человек. Соотношение мужчин и женщин 1,6:1, медиана возраста — 65 лет. Встречается у представителей негроидной расы в 2 раза чаще, чем у европеоидной. Этиология заболевания неизвестна, хотя рассматривается роль хромосомных и генетических факторов, радиации, химических веществ.

Патофизиология
М-протеин, продуцируемый злокачественными плазматическими клетками, относится к IgG у 55% пациентов, к IgА — у 20% пациентов; независимо от вида иммуноглобулина в 40% случаев возникает протеинурия Бенс-Джонса, при которой в моче обнаруживаются свободные моноклональные легкие цепи κ или λ. У 15–20% пациентов плазматические клетки секретируют только белок Бенс-Джонса λ-типа. Около 1% случаев миеломы ассоциировано с IgD.

Характерно развитие диффузного остеопороза или появление отдельных остеолитических поражений, обычно в костях таза, черепа, позвонках, ребрах. Данные поражения обусловлены замещением нормальной костной ткани растущей плазмоцитарной опухолью, а также воздействием цитокинов, которые секretriruются плазмоцитами, они вызывают активацию остеокластов и супрессию остеобластов. Остеолитические поражения обычно носят множественный характер, в редких случаях образуются солитарные интрамедуллярные массы. Значительная потеря костной ткани также может сопровождаться гиперкальциемией. Внекостные солитарные плазмоцитомы возникают редко, однако они могут встречаться во всех типах тканей, особенно в верхних отделах респираторного тракта.

Почечная недостаточность (миеломная почка) у многих пациентов может присутствовать уже на момент установления диагноза либо развиваться в ходе болезни, данное осложнение может иметь несколько причин, основную роль играет отложение депозитов легких цепей в дистальных канальцах и наличие гиперкальциемии. Часто развивается анемия, обусловленная заболеванием почек или супрессией эритропоэза опухолевыми клетками.

У некоторых пациентов наблюдается повышенная восприимчивость к бактериальным инфекциям. В результате применения новых методов лечения возрастает частота вирусных инфекций, особенно герпетических. Вторичный амилоидоз развивается у 10% пациентов с миеломой, чаще всего данное осложнение встречается у пациентов с протеинурией Бенс-Джонса λ-типа.

Проявления множественной миеломы могут быть вариабельны (табл. 154–2).

| ТАБЛ. 154–2. ВАРИАНТЫ ПРОЯВЛЕНИЙ МНОЖЕСТВЕННОЙ МИЕЛОМЫ |
ФОРМА	ХАРАКТЕРИСТИКИ
Экстрамедуллярная плазмоцитома	Плазмоцитомы вне костного мозга
Солитарная плазмоцитома костей	Одиничные костные плазмоцитомы, которые обычно не продуцируют М-протеин
Остеосклеротическая миелома (синдром POEMS)	Полинейропатия (хроническая воспалительная полинейропатия) Органомегалия (гепатомегалия, спленомегалия, лимфаденопатия) Эндокринопатии (гинекомастия, атрофия яичек) М-протеин Кожные изменения (гипергиперплазия, избыточный рост волос)
Несекретирующая миелома	Отсутствие М-протеина в сыворотке крови и моче Наличие М-протеина в плазматических клетках

Глава 154. Плазмоцитарные заболевания
Симптомы и признаки
Найболее распространенными проявлениями являются персистирующие боли в костях (особенно в области спины или грудной клетки), почечная недостаточность, рецидивирующие бактериальные инфекции. Однако в большинстве случаев диагноз устанавливается по результатам обычных лабораторных тестов, которые выявляют повышение уровня общего белка в крови или наличие протеинурии. Характерны патологические переломы, вследствие поражения позвонков может происходить компрессия спинного мозга с развитием параличей. Необходимо отметить, что наличие анемии может быть преимущественной или единственной причиной диагностического поиска. В небольшом количестве случаев наблюдаются проявления, характерные для синдрома гипервязкости. Типичными симптомами являются периферическая нейропатия, синдром запястного канала, патологическая кровоточивость, признаки гиперкальциемии (к примеру, полидипсия). Также может развиваться почечная недостаточность. Лимфаденопатия и гепатоспленомегалия нехарактерны.

Диагностика
■ ОАК + количество тромбоцитов, мазок периферической крови, СОЭ, биохимический анализ (мочевина, креатинин, кальций, мочевая кислота, ЛДГ).
■ Иммунофиксиационный электрофорез белков сыворотки крови и мочи.
■ Рентгенологическое исследование костей скелета.
■ Исследование костного мозга.
Множественную миелому необходимо подозревать у пациентов старше 40 лет с наличием персистирующих болей в костях неясной этиологии (особенно ночью или в покое), других типичных симптомов, необычных лабораторных отклонений (повышение уровня общего белка крови или мочи, гиперкальциемии, признаки почечной недостаточности, анемия). Лабораторная диагностика включает в себя выполнение стандартных анализов крови, электрофореза белков, рентгенографии, исследования костного мозга.

К стандартным анализам крови относятся ОАК, определение уровня СОЭ, биохимический анализ. Анемия присутствует у 80% пациентов, обычно она имеет нормоцитарно-нормохромный характер и отличается формированием «монетных столбиков», которые представляют собой столбики, содержащие от 3 до 12 эритроцитов. Количество лейкоцитов и тромбоцитов обычно в пределах нормы. СОЭ, как правило, >100 мм/ч. Часто наблюдается повышение уровня мочевины, сывороточного креатинина, ЛДГ, мочевой кислоты. Иногда снижается анизоцитарный интервал. Гиперкальциемия на момент установления диагноза присутствует у 10% пациентов. Для количественного определения содержания М-протеина выполняется электрофорез белков сыворотки крови и концентрированной суточной мочи. Сывороточный электрофорез выявляет наличие М-протеина приблизительно у 80–90% пациентов. У остальных 10–20% пациентов обычно присутствуют только свободные моноклональные легкие цепи (белок Бенс-Джонса) или IgD. В таких случаях наличие М-протеина почти всегда возможно выявить при проведении электрофореза белков крови. Проведение иммунофикационного электрофореза позволяет идентифицировать класс иммуноглобулинов, к которому относится М-протеин. С помощью данного метода часто можно обнаружить легкие цепи белка, если иммуноэлектрофорез сыворотки крови дает ложноотрицательный результат. Таким образом, иммунофикационный электрофорез должен выполняться при наличии значительного клинического подозрения на наличие множественной миеломы даже при отрицательном результате стандартного исследования сыворотки крови. Анализ структуры легких цепей с определением соотношения κ и λ-цепей позволяет верифицировать диагноз. Кроме того, анализ структуры легких цепей может проводиться с целью мониторинга эффективности лечения и получения прогностических данных. Если диагноз верифицирован либо имеет крайне высокую клиническую вероятность, измеряется сывороточный уровень β2-микроглобулины; его содержание часто повышено, уровень альбумина, наоборот,
может быть снижен. Существует новая международная классификация, которая использует данные показатели (уровень сывороточного альбумина и β2-микроглобулина) для определения тяжести заболевания и прогноза.

Проводится рентгенологическое исследование костей скелета, которое в 80% случаев выявляет наличие штампованных личных поражений или диффузного остеопороза. Радионуклидное сканирование костей обычно неинформативно. МРТ позволяет получить более детальную картину, она выполняется при наличии локальных болей или неврологической симптоматики.

Также выполняется аспирационная биопсия костного мозга, в биоптате выявляется наличие плазматических клеток, расположенных диффузно или в виде скоплений; диагноз миеломы устанавливается при наличии >10% клеток данного типа. Тем не менее поражение костного мозга может носить очаговый характер, поэтому в некоторых образцах, полученных от пациентов с миеломой, можно обнаружить <10% плазматических клеток. В редких случаях количество плазматических клеток в костном мозге может быть нормальным. Морфология плазматических клеток не зависит от класса синтезируемых иммуноглобулинов. При хромосомном исследовании костного мозга можно обнаружить специфические картиноческие аномалии плазматических клеток, наличие которых ассоциировано с различиями в продолжительности жизни пациента.

При отсутствии М-протеина в сыворотке крови диагностика миеломы основана на выявлении протеинурии Бенс-Джонса > 300 мг/24 часа, остеолитических поражений (при отсутствии достоверных сведений о метаастазированнии злокачественной опухоли или наличии грануломатозных заболеваний), наличии в костном мозге плазматических клеток, расположенных диффузно или в виде скоплений.

Прогноз

Заболевание является прогрессирующим и неизлечимым, однако в последнее время медиана выживаемости увеличилась и превысила 5 лет в результате успехов в терапии. К неблагоприятным прогностическим факторам относится низкий сывороточный уровень альбумина и высокий уровень β2-микроглобулина. У пациентов с почечной недостаточностью, рефрактерной к терапии, прогноз также плохой.

Поскольку множественная миелома является потенциально смертельным заболеванием, полезно обсудить возможность паллиативного лечения, в котором должны принимать участие не только врачи, в него должны быть вовлечены члены семьи и друзья пациента. Необходимо обсуждение таких вопросов, как назначение опекуна (который в т.ч. будет принимать важные решения медицинского характера), использование зонда для искусственного кормления, обезболивание.

Лечение

- При наличии симптомов заболевания назначается химиотерапия.
- Талидомид, бортезомиб, леналидомид в сочетании с кортикостероидами и/или химиотерапией.
- Возможна поддерживающая терапия.
- Возможна трансплантация стволовых клеток.
- Возможна лучевая терапия.
- Лечение осложнений (анемии, гиперкальциемии, почечной недостаточности, инфекций, поражений костей).

В течение последнего десятилетия в лечении миеломы наблюдается значительный прогресс. Целью терапии является долгосрочная выживаемость. У пациентов с симптомным течением лечение направлено на уничтожение злокачественных клеток и коррекцию осложнений. У пациентов с бессимптомным течением, вероятно, польза от лечения отсутствует, поэтому оно, как правило, не проводится до развития клинических проявлений и осложнений. Тем не менее пациенты, имеющие достоверные признаки личных поражений или потери костной ткани (остеопения или остеопороз), должны ежемесячно получать инфузии золедроновой кислоты или памидроната с целью снижения риска осложнений со стороны костей скелета.

Лечение, направленное на уничтожение злокачественных клеток. До недавнего времени традиционная химиотерапия включала...
Раздел 12. Гематология и онкология

Раздел 12. Гематология и онкология
Глава 155. Перегрузка железом

При сохранении суточного диуреза >2000 мл/день. У пациентов с протеинурией Бенс-Джонса применение высокоосмолярного в/в контраста на фоне дегидратации может спровоцировать развитие острой почечной недостаточности.

Инфекционные осложнения наиболее вероятны на фоне нейтропении, индуцированной химиотерапией. У пациентов, получавших новые антимиеломные препараты, чаще наблюдаются случаи инфекций, вызываемых вирусом herpes zoster. При выявлении бактериальной инфекции назначается антибиотикотерапия; тем не менее профилактическое применение антибиотиков, как правило, не рекомендуется. Профилактическое назначение противовирусной терапии может быть показано при приеме некоторых препаратов. Внутривенное введение иммуноглобулинов с профилактической целью может снижать риск инфицирования, однако данный метод применяется в основном у пациентов с рецидивирующими инфекциями. С профилактической целью показана иммунизация пневмококковой и противогриппозной вакциной.

Скелетные поражения требуют масштабной поддерживающей терапии. Для предупреждения дальнейшей потери костной ткани пациент должен сохранять подвиженность, а также принимать дополнительные препараты кальция и витамина D. Для купирования болей в костях могут применяться анальгетики и лучевая терапия в паллиативных дозах (18–24 Гр). Однако лучевая терапия может снижать переносимость установленных цитотоксических доз препаратов, принимаемых в рамках системной химиотерапии. В большинстве случаев, особенно при наличии литических костных поражений, генерализованного остеопороза или остеопении, необходимо ежемесячное введение в/в бисфосфонатов (памидронат или золедроновая кислота). Бисфосфонаты эффективны при лечении скелетных осложнений, они уменьшают боли в костях, возможно, обладают противоопухолевым действием.

Перегрузка железом

Железо (Fe), превышающее биологические потребности человека, откладывается в тканях.
- Гемосидероз представляет собой локальное отложение железа, не вызывающее нарушения в тканях.
- Гемохроматоз (перегрузка железом) – это систематический процесс, при котором отложение железа может вызывать нарушения в тканях.

Избыток железа может возникать в результате первичного гемохроматоза (генетическое расстройство метаболизма железа), от избыточного приема внутрь или абсорбции железа или из-за повторяющихся переливаний крови. Заболеваемость происходит из-за накопления железа в эндокринных органах (особенно в поджелудочной железе, половы железах и гипофизе), печени и сердце.

Гемосидероз

Гемосидероз представляет собой локальное отложение железа, не вызывающее нарушения в тканях.

Локальный гемосидероз может быть вызван рецидивирующими кровоизлияниями в орган. Железо, высвобождаемое из эритроцитов, откладывается в этом органе и может приводить к значительному накоплению в тканях гемосидера. Иногда потеря железа при кровоизлияниях в ткани вызывает железодефицитную анемию, т.к. железо в тканях не может быть использовано повторно.

Наиболее часто поражаемым органом являются легкие, что вызвано рецидивирующими лёгочными кровотечениями, как идиопатическими (например, синдром Гудпасчера), так и обусловленными хронической легочной гипертензией (например, первичная легочная гипертензия, легочный фиброз, выраженный митральный стеноз).
Еще одним органом накопления железа являются почки. Гемосидероз может быть результатом интенсивного внутрисосудистого гемолиза. Свободный гемоглобин фильтруется в почечных клубочках, и железо откладывается в почках. Паренхима почек не повреждается, но тяжелая гемосидеринурия может привести к дефициту железа.

ПЕРВИЧНЫЙ ГЕМОХРОМАТОЗ

(наследственный гемохроматоз)

Первичный гемохроматоз является генетическим заболеванием, характеризующимся чрезмерным накоплением железа, приводящим к повреждению тканей. Болезнь может проявляться в системных симптомах, заболеваниях печени, кардиомиопатии, диабете, эректильной дисфункции и артропатии. Диагноз ставится на основе уровня ферритина сыворотки и генного анализа. Лечится, как правило, при помощи флеботомии.

Эпидемиология

Do недавнего времени причиной заболевания практически у всех больных с первичным гемохроматозом считалась мутация гена HFE. Недавно были обнаружены и другие причины: различные мутации, приводящие к первичному гемохроматозу и происходящие при ферритиновых заболеваниях, ювенильном гемохроматозе, неонатальном гемохроматозе (болезнь накопления железа у новорожденных), гипо-трансферринемии и ацерулоплазминемии. Хотя эти типы заметно отличаются возрастом проявления, клинические последствия перегрузки железом одинаковы во всех случаях.

Более 80% HFE-связанных гемохроматозов вызвано вмешиванием гомозиготных C282Y или C282Y/H63D в гетерозиготные мутации. Это заболевание аутосомно-рексессивное, с гомозиготной частотой 1:200 и гетерозиготной частотой 1:8 у людей североевропейского происхождения. Болезнь редко возникает у чернокожих и людей азиатского происхождения. В большинстве случаев отложение железа происходит вследствие воздействия свободных гидроксилльных радикалов, образующихся, когда отложение железа в тканях катализирует их структуру. Другие механизмы могут повлиять на отдельные органы (например, гиперпигментация кожи может быть результатом увеличения меланина, так же как и накопления железа).

Симптомы и признаки

Клинические последствия перегрузки железом остаются неизменными независимо от этиологии и патофизиологии перегрузки. Врачи считают, что симптомы не проявляются пока не происходит повреждение органов. Тем не менее повреждение органов происходит медленно и его трудно уловить. Сначала обычно возникают усталость и неспецифические симптомы. Другие симптомы связаны с функционированием органов с большим накоплением железа...
(табл. 155–1). У мужчин начальными симптомами могут быть гипогонадизм и эректильная дисфункция, вызванная гонадальным накоплением железа. Нарушение восприимчивости к глюкозе или сахарный диабет также относятся к первоначальным признакам. У некоторых больных возникает гипотиреоз.

Заболевание печени является наиболее распространенным осложнением и может прогрессировать до цирроза, у 20–30% пациентов с циррозом развилась гепатоцеллюлярная карцинома. Заболевание печени является наиболее распространенной причиной смерти.

Кардиомиопатия с сердечной недостаточностью является второй по распространенности причиной. Гиперпигментация (бронзовый диабет) является общей, как и симптоматическая артропатия.

Диагностика

- Уровень ферритина в сыворотке.
- Генетические тесты.

Симптомы и признаки могут быть неспецифическими, трудно уловимыми и проявляться постепенно, так что нужно насторожиться. Первичный гемохроматоз следует заподозрить, когда типичные проявления заболеваний, в частности комбинации таких проявлений, остаются необъяснимыми после профилактического осмотра. Хотя история семейных заболеваний является более конкретным ответом, но она обычно не представлена.

Измерение уровня ферритина в сыворотке является самым простым и самым точным первичным исследованием. Повышенный уровень (>200 нг/мл у женщин и >300 нг/мл у мужчин), как правило, можно наблюдать при первичном гемохроматозе, но также может быть следствием других нарушений, таких как воспалительные заболевания печени (например, хронический вириозный гепатит, неалкогольный стеатогепатит, болезни печени, вызванные алкоголем), рак, некоторые системные воспалительные заболевания (например, рефракторная анемия, гемофагоцитарный лимфогистиоцитоз) или ожирение. Последующие анализы проводятся, если уровень ферритина выходит за границы нормы. Они направлены на оценку уровня сывороточного железа (обычно >300 мг/дл) и железосвязывающей способности (сатурация трансферрина; уровни обычно >50%). Генетический анализ проводится для выявления первичного гемохроматоза, вызванного мутациями гена HFE. В очень редких случаях подозревают другие типы первичных гемохроматозов (например, ферропортиновые заболевания, ювенильный гемохроматоз, неонатальный гемохроматоз, дефицит трансферрина, церулоплазминовая недостаточность), при которых ферритин и тесты на содержание железа в крови указывают на перегрузку железом, а результаты генетического теста на мутацию гена HFE являются отрицательными, особенно у молодых пациентов. Подтверждение таких диагнозов прогрессирует.

Поскольку присутствие цирроза влияет на прогноз, то обычно делается биопсия печени и измеряется содержание железа в ткани (если это возможно). МРТ с высокой интенсивностью является неинвазивной альтернативой для оценки содержания железа в печени (высокая точность).

Для ближайших родственников людей с первичным гемохроматозом необходимо проведение скрининг-теста уровня ферритина в сыворотке и тестирование на 282Y/H63D-ген.

Лечение

- Флеботомия (кровопускание).

Больным с клиническими проявлениями заболевания, повышенным уровнем ферритина

ТАБЛ. 155-1. ОБЩИЕ ПРОЯВЛЕНИЯ ПЕРВИЧНОГО ГЕМОХРОМАТОЗА

<table>
<thead>
<tr>
<th>ПРОЯВЛЕНИЯ</th>
<th>РАСПРОСТРАНЕННОСТЬ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Системные симптомы (например, слабость, сонливость)</td>
<td>75%</td>
</tr>
<tr>
<td>Ненормальные результаты исследования печеночной функции</td>
<td>75%</td>
</tr>
<tr>
<td>Гиперпигментация кожи</td>
<td>70%</td>
</tr>
<tr>
<td>Диабет</td>
<td>50%</td>
</tr>
<tr>
<td>Артропатия</td>
<td>45%</td>
</tr>
<tr>
<td>Эректильная дисфункция</td>
<td>45% (среди мужчин)</td>
</tr>
<tr>
<td>Кардиомиопатия</td>
<td>15%</td>
</tr>
</tbody>
</table>

Для ближайших родственников людей с первичным гемохроматозом необходимо проведение скрининг-теста уровня ферритина в сыворотке и тестирование на 282Y/H63D-ген.
в сыворотке (в частности, уровень > 1000 нг/мл) или повышенной насыщенностью трансферрина необходимо лечение. Пациентам, у которых симптомы заболевания отсутствуют, требуются периодические (например, ежегодно) клинические осмотры и измерение уровня сывороточного железа, ферритина и насыщения трансферрина.

Флеботомия является самым простым и наиболее эффективным методом для удаления избытка железа. Она задерживает развитие фиброза в цирроз, иногда даже обращает вспять цирротные изменения и продлевает жизнь, но не предотвращает гепатоцеллюлярную кардиому. Еженедельно удаляется около 500 мл крови (около 250 мг железа), пока уровень сывороточного железа не станет нормальным и сатурация трансферрина не составит <50%. Еженедельная флеботомия может быть необходима в течение многих месяцев (например, если 250 мг железа удаляются в неделю, то для удаления 10 г железа потребуется 40 недель). Для поддержания сатурации трансферрина на уровне <30% при нормальном уровне железа, можно проводить периодические флеботомии.

Диабет, кардиомиопатия, эректильная дисфункция и другие вторичные проявления лечатся, как это показано.

Больные должны придерживаться сбалансированной дietsы, совсем не требуется ограничивать потребление железосодержащих продуктов (например, красное мясо, печень). Алкоголь можно употреблять только в умеренных количествах, т.к. это может увеличить абсорбцию железа и повысить риск цирроза.

ФЕРРОПОРТИНОВАЯ БОЛЕЗНЬ

Ферропортиновая болезнь встречается в основном среди жителей юга Европы и является результатом аутосомно-доминантной мутации гена SLC 40 A1. Заболевание проявляется в первой декаде жизни повышением уровня ферритина сыворотки с низким или нормальным содержанием трансферрина с прогрессирующим ростом насыщения трансферрина в 3-й и 4-й декадах жизни. Клинические проявления более легкие, чем при болезни HFE, и включают умеренное поражение печени и легкую анемию. Большие флеботомии переносятся плохо, необходим мониторинг уровня гемоглобина и насыщения трансферрина.

ЮВЕНИЛЬНЫЙ ГЕМОХРОМАТОЗ

Ювенильный гемохроматоз является редким аутосомно-рецессивным заболеванием, вызванным мутацией в гене HJV, который влияет на транскрипцию белка гемоювелина. Это часто проявляется у подростков. Симптомы и признаки включают прогрессирующие гепатомегалии и гипогонадотропный гипогонадизм. Уровень ферритина >1000 нг/мл, и сатурация трансферрина составляет >90%.

ДЕФИЦИТ ТРАНСФЕРРИНА И ЦЕРУЛОПЛАЗМИНА

(гипотрансферринемия/атрансферринемия; ацерулоплазминемия)

При дефиците трансферрина абсорбиранное железо, не связанное с трансферрином, входит в портальную систему и откладывается в печени. Последующий перенос его в место производства эритроцитов снижен вследствие дефицита трансферрина.

При дефиците церулоплазмина нехватка ферроксидазы приводит к нарушению преобразования Fe$^{2+}$ в Fe$^{3+}$, которое необходимо для связи с трансферрином, что нарушает транспорт железа из внутриклеточного пула в плазму крови, вызывая аккумуляцию железа в тканях.

Диагноз основан на определении сывороточного трансферрина (или железосвязывающей способности) и церулоплазминемии. Лечение экспериментальное (например, антисеробенты железа могут переноситься лучше, чем флеботомия, потому что у пациентов обычно возникает анемия).

МУТАЦИИ ГЕНА РЕЦЕПТОРА ТРАНСФЕРРИНА 2

Мутации рецептора трансферрина 2, белка, который появляется для контроля над сатурацией трансферрина, могут вызывать редкие аутосомно-рецессивные формы гемохроматоза. Симптомы и признаки сходные с HFE-гемохроматозом.
ВТОРИЧНАЯ ПЕРЕГРУЗКА ЖЕЛЕЗОМ
(вторичный гемохроматоз)

Вторичная перегрузка железом появляется в результате избыточной аборбции железа, повторяющихся переливаниях крови или избытке перорального приема, как правило, у пациентов с нарушениями эритропоэза. Диагностика проводится при помощи исследования сывороточного железа. Лечение, как правило, проводится с помощью хелации.

Этиология
Вторичная перегрузка железом возникает у пациентов с:
- гемоглобинопатией (например, серповидно-клеточная анемия, талассемия, сидеробластная анемия);
- врожденной гемолитической анемией;
- миелодисплазией.
Перегрузка железом возникает вследствие следующих механизмов:
- повышенное всасывание железа (которое возникает по неизвестным причинам с неэффективным эритропоэзом);
- поступление железа извне, предназначенного для лечения анемии;
- повторяющиеся переливания крови (каждая единица крови обеспечивает около 250 мг железа; накопление железа в тканях становится существенным, когда перелито более 40 единиц крови).
Пациенты с гемоглобинопатией и врожденной гемолитической анемией обычно взрослые, поэтому осложнения, связанные с перегрузкой железом, стали обычным явлением. У таких больных перегрузка железом, затронувшая сердце, печень и эндокринные органы стала распространенной причиной смерти. Но выживаемость при такой ситуации можно продлить путем обезжелезивания.

Диагностика
Больных с неэффективным эритропоэзом необходимо проверять на наличие вторичной перегрузки железом, которая диагностируется путем измерения сывороточного ферритина, сывороточного железа и сатурации трансферрина.

Лечение
Обычно это хелация деферазироксом или дефероксамином.
Некоторых больных можно лечить с помощью флеботомии и приема эритропоэтина для поддержания эритропоэза. Однако поскольку это усиливает анемию, то применение флеботомии для многих пациентов не рекомендуется (например, лица с уровнем гемоглобина <10 г/дл, зависящие от переливания, и те, у кого появляются симптомы анемии после флеботомии). Таким больным необходимо назначать хелацию. Целью лечения является достижение уровня сатурации трансферрина <50%.

Дефероксамин является препаратом, традиционно используемым для хелатотерапии. Он проводится небольшими подкожными инъекциями в течение ночи с помощью переносного насоса 5–7 раз в неделю или при помощи 24 ч инфузий. Доза составляет от 1 до 2 г у взрослых и от 20 до 40 мг/кг у детей. Тем не менее эта терапия сложна в управлении и требует от больных больших временных затрат, поэтому часто приводит к ее несоблюдению. Побочные действия включают гипотонию, нарушения желудочно-кишечного тракта и анафилаксию (острую), потерю зрения и слуха (при хроническом использовании).
Деферазирокс, оральный хелатообразователь, является эффективным и чаще всего используется как альтернатива дефероксамину. Деферазирокс снижает уровень железа и предотвращает или задерживает наступление осложнений от перегрузки железом. Начальная доза составляет 20 мг/кг перорально 1 раз в день. Больных ежемесячно наблюдают при помощи увеличения дозы до 30 мг/кг 1 раз в день. Лечение может быть прервано, когда ферритин сыворотки <500 нг/мл. Побочные эффекты (которые появляются примерно у 10% пациентов) могут включать тошноту, боль в животе, диарею и сыпь. Могут возникнуть нарушения функции печени и почек, поэтому следует проводить периодические исследования этих функций (например, ежемесячно, иногда и чаще для пациентов группы высокого риска).
Трансфузионная медицина

В США ежегодно переливают более 29 млн единиц компонентов крови от примерно 8 млн добровольных доноров. И хотя процедура трансфузии в настоящее время проводится безопасней, чем когда-либо, риск (и общественное восприятие риска) требует информированного согласия во всех случаях.

ЗАБОР КРОВИ

В США, мероприятия по сбору, хранению и транспортировке крови и ее компонентов являются стандартными и регулируются Управлением по контролю за продуктами и лекарствами, Американской ассоциацией банков крови, а иногда и государственными или местными органами здравоохранения. Обследование донора включает в себя обширный список вопросов о состоянии здоровья, измерение температуры, частоты сердечных сокращений и артериального давления, а также определение гемоглобина. Некоторые потенциальные доноры получают постоянные или временные отводы от кровообращения (табл. 156–1). Отводы помогают защитить потенциальных доноров от возможных негативных последствий донации, а реципиентов от возможных болезней. Сдавать кровь можно раз в 56 дней. За редким исключением, донации не оплачиваются.

При стандартном донорстве крови 450 мл цельной крови собирают в пластиковый пакет, содержащий консервант антикоагулянт. Целевая кровь или эритроцитарная масса, сохраняемая с использованием антикоагулянта, может храниться в течение 35 дней. Упакованные эритроциты могут храниться в течение 42 дней при добавлении раствора аденозина дифосфата и глюкозы в концентрации 6% (абсолютное значение концентрации раствора аденозина дифосфата 6 мМоль/л и глюкозы 360 мМоль/л). Аутологичная гемотрансфузия, подразумевающая использование собственной крови пациента, является наименее предпочтительным методом трансфузии. При проведении плановых операций за 2–3 недели до нее у пациента берут до 3 или 4 доз цельной крови или эритроцитарной массы. Затем пациент получает железосодержащие препараты. Аутологичный метод донации необходимо, когда нужную кровь трудно найти из-за выработки антител к эритроцитам или в случае редкой группы крови. Специальные процедуры консервирования крови также применяются для сбора и хранения крови, предназначенной для аутологичной гемотрансфузии после травм и во время операции.

Предтрансфузионные исследования

Исследование донорской крови включает типирование на АВО, Rh0(D) антиген, сканирование антител и тестирование на маркеры инфекционных заболеваний (табл. 156–2). Тест на совместимость включает исследование эритроцитов реципиента на антигены A, B, и Rh0(D) (группа крови и резус-фактор): сканирование плазмы реципиента на антитела к другим антигенам эритроцитов; тест направлен на проверку совместимости плазмы реципиента с антигенами эритроцитов донора. Этот анализ выполняется до переливания, но в резекционной ситуации тестируется после входа крови из банка крови. Этот тест также полезен при диагностике реакции на переливание.

АВО типирование донора и реципиента крови проводится с целью предотвращения переливания несовместимых эритроцитов (рис. 156–1). Как правило, кровь при переливании должна быть такой же АВО, как у реципиента. В экстренных ситуациях или когда тип АВО неизвестен или вызывает сомнение, можно переливать эритроцитарную массу (не цельную кровь), которая не содержит ни А, ни B антигенов и может быть использована для пациентов с любым АВО.

Типирование резус-фактора определяет присутствие (резус-положительный) или отсутствие (резус-отрицательный) резус-фактора эритроцитов Rh0(D). Резус-отрицательным пациентам всегда нужно переливать резус-отрицательную кровь, за исключением случаев, когда срочно требуется переливание, а резус-отрицательная
Таблица 156-1. Некоторые причины отвода от донорства в США

<table>
<thead>
<tr>
<th>ПРИЧИНА</th>
<th>ВРЕМЕННАЯ/ПОСТОЯННАЯ</th>
<th>КОММЕНТАРИЙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>СПИД или попадание в группу высокого риска, гомосексуализм у мужчин</td>
<td>Постоянное</td>
<td>Высокая степень риска. Например, IV стадия наркомании или сексуальные отношения с ВИЧ-положительным партнером</td>
</tr>
<tr>
<td>Анемия</td>
<td>Временное</td>
<td>Допускается к донации после выздоровления</td>
</tr>
<tr>
<td>Применение бычьего инсулина</td>
<td>Постоянное</td>
<td>Люди, использующие бычий инсулин, с 1980 г. не могут быть донорами</td>
</tr>
<tr>
<td>Рак</td>
<td>Постоянное</td>
<td>Люди с излечимыми формами (например, небольшой рак кожи) могут стать донорами</td>
</tr>
<tr>
<td>Врожденное нарушение свертываемости крови</td>
<td>Постоянное</td>
<td>—</td>
</tr>
<tr>
<td>Лекарства (некоторые)</td>
<td>Временное</td>
<td>Время отвода зависит от препарата: • Финастерид: отложить на 1 мес после последней дозы • Изотретиноин: отложить на 1 мес после последней дозы • Дутастерид: отложить на 6 мес после последней дозы • Ацетретин: отложить на 3 года после последней дозы • Этретинат: отложить на неопределенное время</td>
</tr>
<tr>
<td>Контакт с носителем гепатита</td>
<td>Временное</td>
<td>Нужно подождать 12 мес после контакта</td>
</tr>
<tr>
<td>Гепатит</td>
<td>Постоянное</td>
<td>Пожизненный отвод от донорства, если когда-либо диагностировался вирусный гепатит</td>
</tr>
<tr>
<td>Гипертония</td>
<td>Временное</td>
<td>Отложить донацию, пока давление не придет в норму</td>
</tr>
<tr>
<td>Мalaria или контакт с ней</td>
<td>Временное</td>
<td>3 года после лечения малярии или проживания в районе, где малярия является эндемическим заболеванием; 12 мес после визита в район, где малярия является эндемическим заболеванием</td>
</tr>
<tr>
<td>Беременность</td>
<td>Временное</td>
<td>6 нед после родов</td>
</tr>
<tr>
<td>Тяжелая астма</td>
<td>Постоянное</td>
<td>—</td>
</tr>
<tr>
<td>Тяжелые болезни сердца</td>
<td>Постоянное</td>
<td>—</td>
</tr>
<tr>
<td>Пребывание в Европе или Великобритании</td>
<td>Постоянное</td>
<td>Общее время нахождения в Великобритании более 3 мес в период с 1980 по 1996 г. Общее время нахождения в Европе (кроме Франции) ≥5 лет в период с 1980 г. Общее время нахождения во Франции >5 лет в период с 1980 г.</td>
</tr>
<tr>
<td>Татуировка</td>
<td>Временное</td>
<td>12 мес после нанесения</td>
</tr>
<tr>
<td>Переливание крови</td>
<td>Временное</td>
<td>12 мес</td>
</tr>
<tr>
<td>Вакцинация</td>
<td>Пожизненный отвод</td>
<td>Рецепиенты крови и ее компонентов в Великобритании в период с 1980 г. по настоящее время</td>
</tr>
<tr>
<td>Вакцинация</td>
<td>Временное</td>
<td>Длительность отвода зависит от вакцины • Анатоксины, синтетические или убитые вирусные, бактериальные или риккетсиозные вакцины* при отсутствии симптомов у доноров: нет отсрочки • Вакцины криптококкового паротита, полиомиелита (Солка), эффективности тифа (перорально)1: отвод на 2 нед • Вакцины краснухи или ветряной оспы1: отвод на 4 нед</td>
</tr>
</tbody>
</table>

* Эти вакцины включают инъекции против сибирской язвы, холеры, дифтерии, гепатита А, гепатита В, гриппа, болезни Лайма, паратифа, коклюша, чумы, пневмококковых полисахаридов, полиомиелита (Солка), птичьей лихорадки Скалистых гор, столбняка и брюшной инфекции.

† Получатели других живых ослабленных вирусных или бактериальных вакцин могут иметь отвод от донорства в течение 2–4 нед, в зависимости от вакцины.

Великобритания
кровь отсутствует. Резус-положительным пациентам можно переливать как резус-положительную, так и резус-отрицательную кровь. Иногда эритроциты некоторых резус-положительных людей слабо реагируют на типирование резус-фактора (слабый D, или D_u, положительный), но эти люди по-прежнему считаются резус-положительными.

Скрининг антител на неожиданные антиэритроцитарные антитела проводится на основе крови потенциальных реципиентов и пренатально на материнских образцах. Неожиданные антиэритроцитарные антитела специфичны для эритроцитарных антигенов, кроме А и В (например, RhD, Kell, Duffy (Fy)). Важное значение имеет ранняя диагностика, поскольку такие антитела могут вызывать серьезные гемолитические реакции при переливаниях крови или гемолитической болезнь новорожденных. Они также могут значительно усложнить тестирование на совместимость и отсрочить закупку необходимой крови.

Для выявления неожиданных эритроцитарных антител используется непрямой антиглобулиновый тест (непрямой тест Кумбса). Этот тест может быть положительным в случае присутствия неожиданного антитела группы крови или присутствия в аутоиммунной гемолитической анемии свободного (не присоединенного к эритроцитам) антитела. Реагент эритроцитов смешивают с плазмой или сывороткой пациента, инкубируют, промывают, тестируют с антивосходящим глобулолом и наблюдают за агглютинацией. Обнаружение антител определяет его специфичность. Знание специфичности антител является полезным при оценке их клинического значения, выборе совместимых групп крови, а также управлении гемолитической болезнью новорожденных.

Прямое антиглобулиновое тестирование (прямой тест Кумбса) обнаруживает антитела, которые в естественных условиях покрывают эритроциты пациента. Тестирование используется, когда подозревается аутоиммунный гемолиз. Эритроциты больного напрямую исследуют с антивосходящим глобулолом и наблюдают агглютинацию. Положительный результат при корреляции с клиническими данными указывает на аутоиммунную гемолитическую анемию, медикаментозный гемолиз, трансфузионную реакцию или гемолитическую болезнь новорожденных.

Титрование антител проводится, если в плазме беременной женщины или у больного с холодной аутоиммунной гемолитической анемией присутствуют клинически значимые неожиданные антиэритроцитарные антитела. Титер материнских антител коррелирует с тяжестью гемолитической
болезни при несовместимости плода и часто используется для назначения лечения при гемолитической болезни новорожденных (одновременно с ультразвуковым исследованием и изучением амниотической жидкости).

Проведение теста перекрестной совместимости в дополнение к тиperingанию ABO/резус-фактора и скринингу антител увеличивает обнаружение несовместимости лишь на 0,01%. Поэтому многие больницы проводят больше электронных, чем физических перекрестных проб у пациентов с отрицательными результатами скрининга антител. При наличии у пациента клинически значимых антиэритроцитарных антител донорская кровь ограничена по отношению к дозам эритроцитарной массы, отрицательно для соответствующего антигена; последующие тесты на совместимость проводятся путем объединения плазмы реципиента, донорских эритроцитов и античеловеческого глобулина. При отсутствии у реципиента клинически значимых антиэритроцитарных антител немедленный виток перекрестной совместимости, пропускающий антиглобулиновую fazу, подтверждает ABO совместимость.

Чрезвычайное переливание крови применяется в случае нехватки времени (как правило, <60 min) для проведения тщательного теста на совместимость, потому что пациент находится в геморрагическом шоке. Если позволяет время (для этого необходимо около 10 мин), то проводится исследование на определение типа ABO/Rh. При чрезвычайных обстоятельствах переливают O тип эритроцитов, если ABO является неопределенным, и резус-отрицательную кровь, если резус не определен.

Типирование и скрининг могут быть необходимы при обстоятельствах, которые вряд ли потребуют переливания, например, при плановой операции. Кровь пациента тиperingается на ABO/Rh антигены и проходит скрининг на антитела. Если антитела отсутствуют, а пациенту необходимо переливание крови, конкретный тип ABO/Rh или совместимые эритроциты могут быть определены без антиглобулиновой фазы перекрестной пробы на совместимость. Если существуют неожиданные антитела, то требуется проведение полного тестирования.

ПРОДУКТЫ КРОВИ

Целая кровь способствует улучшению кислородной емкости крови, расширению объема и замене факторов свертывания. Раньше ее назначали при сильной кровопотере. Однако, поскольку компонентная терапия является более эффективной, в настоящее время трансфузии цельной крови в США не применяются.

Эритроциты. Эритроцитарная масса является компонентом выбора в случае необходимости повышения уровня гемоглобина. Показания для трансфузии зависят от состояния больного. Кислородная емкость крови может быть адекватной при содержании гемоглобина на уровне 7 г/л у здоровых людей, но трансфузии могут быть необходимы при более высоком уровне гемоглобина у больных с легочно-сердечной недостаточностью или продолжающимся кровотечением. Одна доза эритроцитов повышает уровень гемоглобина у взрослого больного в среднем на 1 г/дл и уровень гематокрита на 3% от предтрансфузионного уровня. Другие растворы могут использоваться одновременно или по отдельности в случае, если требуется только расширение объема крови. Замороженная эритроцитарная масса применяется редко у больных, имеющих множественные антитела группы крови или антитела к часто встречающимся эритроцитарным антигенам.

Омывые эритроциты свободны почти от всех следов плазмы, большинства лейкоцитов и тромбоцитов. Их обычно назначают больным, имеющим тяжелые реакции на трансфузию плазмы (например, тяжелая аллергия, пароксизмальная ночная гемоглобинурия или иммунизация IgA). У IgA-иммунизированных больных наиболее предпочтительным вариантом для трансфузии может быть забор крови у доноров с дефицитом IgA.

Эритроцитарная масса с лейкоцитарной деплецией готовится с помощью специальных фильтров, удаляющих ≥99,99% лейкоцитов. Ее назначают больным с перенесенными негемолитическими фебрильными трансфузционными реакциями, при обменных трансфузиях, больным, нуждающимся в цитомегаловирусагитивной крови при ее отсутствии и для предотвращения тромбоцитарной алоиммунизации.

Продукты крови

Целая кровь способствует улучшению кислородной емкости крови, расширению объема и замене факторов свертывания. Раньше ее назначали при сильной кровопотере. Однако, поскольку компонентная терапия является более эффективной, в настоящее время трансфузии цельной крови в США не применяются.

Эритроциты. Эритроцитарная масса является компонентом выбора в случае необходимости повышения уровня гемоглобина. Показания для трансфузии зависят от состояния больного. Кислородная емкость крови может быть адекватной при содержании гемоглобина на уровне 7 г/л у здоровых людей, но трансфузии могут быть необходимы при более высоком уровне гемоглобина у больных с легочно-сердечной недостаточностью или продолжающимся кровотечением. Одна доза эритроцитов повышает уровень гемоглобина у взрослого больного в среднем на 1 г/дл и уровень гематокрита на 3% от предтрансфузионного уровня. Другие растворы могут использоваться одновременно или по отдельности в случае, если требуется только расширение объема крови. Замороженная эритроцитарная масса применяется редко у больных, имеющих множественные антитела группы крови или антитела к часто встречающимся эритроцитарным антигенам.

Омывые эритроциты свободны почти от всех следов плазмы, большинства лейкоцитов и тромбоцитов. Их обычно назначают больным, имеющим тяжелые реакции на трансфузию плазмы (например, тяжелая аллергия, пароксизмальная ночная гемоглобинурия или иммунизация IgA). У IgA-иммунизированных больных наиболее предпочтительным вариантом для трансфузии может быть забор крови у доноров с дефицитом IgA.

Эритроцитарная масса с лейкоцитарной деплецией готовится с помощью специальных фильтров, удаляющих ≥99,99% лейкоцитов. Ее назначают больным с перенесенными негемолитическими фебрильными трансфузционными реакциями, при обменных трансфузиях, больным, нуждающимся в цитомегаловирусагитивной крови при ее отсутствии и для предотвращения тромбоцитарной алоиммунизации.
Свежезамороженная плазма. Свежезамороженная плазма (СЗП) является неконцентрированным источником всех факторов свертывания, кроме тромбоцитов. Показания для ее трансфузии включают коррекцию кровотечения, вторичного к дефициту плазменных факторов, при котором недоступно замещение специфических факторов, мультифакторные дефицитные состояния (например, массивные трансфузии, диссеминированное внутрисосудистое свертывание (ДВС), патология печени) и передозировку варфарином, хотя первоочередным выбором должен быть концентрат протромбинового комплекса. Переливание СЗП может применяться в дополнение к эритроцитарной массе, когда отсутствует цельная кровь для неонатальной обменной трансфузии. Трансфузии СЗП не должны применяться для простого расширения объема циркулирующей крови.

Криопреципитат. Криопреципитат является концентратом, приготовляемым из СЗП. Каждая доза криопреципитата обычно содержит около 80 ед фактора VIII, фактор Виллебранда и около 250 мг фибриногена. Он также содержит ADAMTS13 (фермент, являющийся недостаточным при врожденной тромботической тромбоцитопении), фибронектин и фактор XIII. Хотя изначально криопреципитат применялся для лечения гемофилии и болезни Виллебранда, сейчас он используется еще и как источник фибриногена при остром ДВС-синдроме, при лечении уремических кровотечений, в кардиохирургии (фибриновый клей), при акушерских осложнениях, таких как отслоика плаценты и HELLP-синдром. Криопреципитат также используется при лечении иммунной тромбоцитопении (он вводится внутривенно).

Лейкоциты. Гранулоциты можно переливать в случае сепсиса у больных с тяжелой персистирующей нейтропенией (лейкоциты <500/мкл) при отсутствии положительной реакции на антибиотики. Гранулоциты должны быть перелиты в течение 24 часов с момента заготовки, однако выполнение необходимых обследований (ВИЧ, гепатиты, человеческий T-клеточный лимфотропный вирус, сифилис) может быть не окончено к этому времени. Трансфузии гранулоцитов используются редко из-за применения современных антибиотиков и препаратов, стимулирующих производство гранулоцитов во время химиотерапии.

Иммуноглобулины. Rh-иммуноглобулин (Rhlg), вводимый внутримышечно или внутривенно, предотвращает возникновение материнских Rh-антител, которые могут образоваться при фетоматеринских кровотечениях. Стандартная доза внутримышечного Rhlg (300 мкг) должна быть введена Rh-отрицательной матери немедленно после аборта или родов (живого или мертворожденного ребенка), за исключением случаев, если ребенок является Rh0(D) и D4-отрицательным или сыворотка матери уже содержит анти-Rh0(D). При объеме фетоматеринского кровотечения более 30 мл требуются большие дозы препарата. При подозрении на такое кровотечение одновременно с определением его объема в качестве скрининг-теста проводится розеточный тест. Если результат теста положительный, то выполняется количественный тест (например, Клейхуэр-Битке). Rhlg также используется при лечении иммунной тромбоцитопении (он вводится внутривенно).

Тромбоциты. Тромбоконцентрат применяется для предотвращения развития кровотечений при асимвтоматической тяжелой тромбоцитопении (количество тромбоцитов <10 000/мкл), при кровотечениях у пациентов с менее выраженной тяжелой тромбоцитопенией (уровень тромбоцитов <50 000/мкл); при кровотечениях у больных с дисфункцией тромбоцитов, вызванной антиагрегантами, при нормальном количестве тромбоцитов в крови; больным, получающим массивные переливания, вызывающие дилипопенные тромбоцитопению, и иногда перед хирургическим вмешательством, особенно с экстракорпоральным кровообращением больше 2 ч (которое часто вызывает дисфунк-
Глава 156. Трансфузионная медицина

Трансфузионная медицина

1783

цию тромбоцитов). Одна доза тромбоцитарного концентрата увеличивает количество тромбоцитов примерно на 10 000/мкл. Нормальный гемостаз достигается при уровне тромбоцитов около 10 000/мкл у пациентов без отягощающих условий и при уровне тромбоцитов около 50 000/мкл у операционных пациентов. Поэтому взрослому больному обычно достаточно 4–6 доз тромбоцитоконцентрата.

Тромбоцитарный концентрат заготавливают с помощью сепараторов крови, которые собирают тромбоциты (или другие клетки) и возвращает ненужные компоненты (например, эритроциты, плазму) донору. Эта процедура, называемая цитотрафез, обеспечивает достаточное количество тромбоцитов от одного донора (эквивалентно 4–6 отдельным тромбоцитарным дозам) для трансфузии взрослому больному. Цитотрафез за счет минимизации риска инфекционных и иммунных осложнений, в определенных условиях является более предпочтительным по сравнению с трансфузиями от нескольких доноров.

Некоторые больные могут быть невосприимчивы к тромбоцитарным трансфузиям, возможно, из-за секвестрации в селезенке или потребления, вызванного алоиммунизацией HLA или специфическими тромбоцитарными антигенами. Такие больные могут реагировать на трансфузии тромбоцитов, полученных от различных доноров (поскольку существует вероятность, что некоторые дозы будут HLA-совместимы), на тромбоциты от родственников или на АВО-/HLA-совместимые тромбоциты. Алоиммунизация может уменьшаться при помощи трансфузии тромбоцитоконцентрата или эритроцитарной массы после лейкоцитарной деплеции.

Другие продукты. Облучение компонентов крови используется для предотвращения риска возникновения реакции «трансплантат против хозяина». Предпринималось много попыток разработать заменители крови, применяя инертные химические (например, перфторуглероды) или гемоглобиновые растворы, способные переносить и доставлять О2 тканям. Хотя у этих заменителей гемоглобина и была возможность доставить О2 к тканям в случае чрезвычайной ситуации, несколько клинических испытаний провалилось из-за роста смертности и тяжелых неблагоприятных сердечно-сосудистых расстройств (например, гипотония). В настоящее время попытки получить тромбоциты и эритроциты из различных источников стволовых клеток-предшественниц продолжаются.

У пациентов, перенесших миелоабластную или миелотоксическую терапию, гемопоэтические клетки-предшественники (стволовые клетки) от аутологичных или аллогенных доноров могут быть переливаны в качестве способа восстановления кроветворной функции (в частности, иммунной функции).

ТЕХНИКА ТРАНСФУЗИИ

Внимание: перед началом переливания должно быть получено согласие пациента, проверены браслет пациента с нанесенной группой крови и резус-фактором, этикетки единиц крови и проведен тест на совместимость. Необходимо быть уверенными, что данный компонент предназначен для пациента.

Использование иглы номер 18 (или больше) предотвращает механические повреждения и гемолиз эритроцитов. При трансфузии всех компонентов крови всегда должен использоваться стандартный фильтр. В контейнер с трансфузируемой кровью разрешается добавлять только 0,9% раствор хлорида натрия. Гипотонические растворы вызывают гемолиз эритроцитов, а кальций, содержащийся в растворе Рингера, может вызвать образование сгустка.

Трансфузия одной дозы или компонента крови должна быть завершена в течение 4 часов; более длительные трансфузии повышают риск бактериального роста. При необходимости медленной трансфузии, например в случае сердечной недостаточности или гиперволемии, дозы могут быть разделены на более мелкие аликвоты в банке крови. Для детей 1 доза крови должна быть разделена на небольшие стерильные аликвоты, используемые несколько дней, тем самым уменьшая риск иммунизации.

Необходимо тщательное наблюдение за больным, особенно в первые 15 минут трансфузии, включая запись температуры, артериального давления, пульса и частоты дыхания. Пе-
риодический контроль продолжается во время и после трансфузии, в течение всего периода оценивается показатель жидкости. Больного необходимо укрыть и согреть для предотвращения озноба, который может быть расценен как реакция на переливание. Выполнение трансфузий ночью нежелательно.

ОСЛОЖНЕНИЯ
ПРИ ТРАНСФУЗИИ

Наиболее распространенными трансфузионными осложнениями являются:
• реакции с ознобом;
• фебрильные негемолитические реакции.

Наиболее серьезными осложнениями, имеющими высокий показатель смертности, являются:
• перегрузка кровообращения, вызванная переливанием;
• острые повреждения легких, связанное с трансфузий;
• острые гемолитические реакции, обусловленные АВО-несовместимостью.

Раннее распознавание симптомов трансфузионной реакции и быстрое извещение банка крови об этом является очень важным моментом. Наиболее частыми симптомами являются озноб, лихорадка, одышка, головокружение, крапивница, зуд и боль. При возникновении хотя бы одного из этих симптомов (кроме локализованной сыпи и зуда) необходимо немедленно прекратить переливание, а внутривенное введение продолжить физиологическим раствором хлорида натрия. Оставшиеся компоненты крови и пробу крови реципиента с антикоагулянтом следует направить в банк крови для проведения необходимой проверки.

Гемолиз эритроцитов донора или реципиента (обычно первого) в ходе или после трансфузии может быть вызван АВО/Rh-несовместимостью, плазменными антителами или гемолизированными или хрупкими эритроцитами (например, от перегревания крови, контакта с гипотоническими внутривенными растворами). Наиболее распространенными и тяжелыми является гемолиз, когда несовместимые донорские эритроциты гемолизируются антителами плазмы реципиента. Гемолитическая реакция может быть острой (в пределах 24 часов) или отсроченной (от 1 до 14 дней).

Острая гемолитическая трансфузионная реакция (ОГТР). Около 20 человек ежегодно умирают в США от острой гемолитической трансфузионной реакции. Острая гемолитическая трансфузионная реакция обычно возникает от взаимодействия плазменных антител реципиента с донорскими эритроцитными антителами. АВО-несовместимость является наиболее распространенной причиной острой гемолитической трансфузионной реакции. Наиболее частой причиной острой гемолитической трансфузионной реакции является неправильная маркировка или спутывание продукта крови на предтрансфузионном этапе, а не лабораторная ошибка при подборе крови.

Гемолиз является внутрисосудистым, вызывающим гемоглобинурию с острой почечной недостаточностью различной степени и возможным ДВС-синдромом. Тяжесть острой гемолитической трансфузионной реакции зависит от степени несовместимости, количества переливаемой крови, скорости трансфузии и сохранения функции почек, печени и сердца. Острая фаза обычно развивается в течение 1 часа после начала трансфузии, но может протекать и позже в ходе трансфузии или сразу после ее завершения. Начало обычно внезапное. Больной может жаловаться на дискомфорт или беспокойство. Может возникнуть одышка, лихорадка, озноб, гиперемия лица и сильная боль в поясничной области. Возможны развитие шока, вызывающего слабый частый пульс, холодная липкая кожа, снижение артериального давления, тошнота и рвота. После гемолиза может возникнуть желтуха.

Если острая гемолитическая трансфузионная реакция возникает у пациента под обшей ане-
стезией, то единственными симптомами могут быть гипотензия, неконтролируемое кровотечение из области разреза и слизистых, вызванное развитием ДВС, или темный цвет мочи, обусловленный гемоглобинурией.

При подозрении на острую гемолитическую трансфузионную реакцию одним из первых шагов является проверка переливаемой крови и анкетных данных больного. Диагноз подтверждается определением гемоглобина в моче, сыворотки лактатдегидрогеназы, билирубина и гаптоглобина. При внутрисосудистом гемолизе в плазме крови и моче повышается уровень свободного гемоглобина; уровень гаптоглобина очень низкий. Гипербилирубинемия может развиться позднее.

После завершения острой фазы прогноз зависит от степени развившейся почечной недостаточности. Диурез и снижение уровня мочевины обычно указывают на восстановление. Постоянная почечная недостаточность встречается редко. Длительная олигурия и шок являются плохими признаками.

При подозрении на острую гемолитическую трансфузионную реакцию переливание должно быть остановлено и начата поддерживающая терапия. Целью первоначальной терапии является поддержка артериального давления и почечного кровотока, путем введения внутривенной инфузии 0,9% раствора хлорида натрия с фуросемидом. Раствор применяется для того чтобы добиться объема диуреза 100 мл/ч в течение 24 часов. Начальная доза фуросемида составляет 40–80 мг (1–2 мг/кг у детей) с увеличением дозы для поддержки диуреза на уровне >100 мл/ч в первый день.

Антигипертензивные препараты должны применяться осторожно. Применение прессорных препаратов, снижающих почечный кровоток (например, адреналин, норадреналин, высокие дозы допамина), противопоказано. При необходимости применения прессорных препаратов вводится допамин в дозе 2–5мкг/кг/мин.

Необходимо как можно скорее организовать осмотр больного нефрологом, особенно при отсутствии диуретической реакции в течение 2–3 часов после начала терапии, что может указывать на развитие остrego тубулярного некроза. В таком случае последующая терапия раствором и диуретиками может быть противопоказана, необходим ранний диализ.

Отсроченная гемолитическая трансфузионная реакция. Иногда у больного, сенсибилизированного к эритроцитарным антигенам, наблюдаются очень низкий уровень антител и отрицательные результаты предтрансфузионного обследования. После переливания эритроцитов, несущих этот антиген, может развиться первичный или анастоместический ответ, который вызывает отсроченную гемолитическую трансфузионную реакцию, не имеющую таких резких проявлений, как острая гемолитическая трансфузионная реакция. У больного могут отсутствовать какие-либо симптомы или появляется небольшая температура. Тяжелая симптоматика встречается редко. Обычно происходит разрушение переливаемых эритроцитов (имеющих антиген), что приводит к снижению гематокрита, небольшому повышению концентрации лактатдегидрогеназы и билирубина. Вследствие того, что отсроченная гемолитическая трансфузионная реакция обычно протекает легко и является самоограничивающейся, она часто не определяется и клинически проявляется необычным снижением концентрации гемоглобина. Лечение тяжелых форм реакции аналогично лечению острой гемолитической трансфузионной реакции.

Фебрильные негемолитические трансфузионные реакции. Фебрильные реакции могут возникать при отсутствии гемолиза. Антитела, направленные против лейкоцитарных антигенов системы HLA при всех остальных совместимых параметрах донорской крови, могут быть одной из возможных причин этой реакции. Эта причина является наиболее распространенной у больных, получающих частые гемотрансфузии. Другой возможной причиной являются цитокины, высвобождаемые из лейкоцитов во время хранения, особенно в тромбооконцентрате.

Клинически фебрильная реакция проявляется повышением температуры тела более чем на 1 °C, ознобом, иногда головной болью и болью в спине. Одновременные симптомы аллергической реакции являются частыми. Так как лихорадка и озноб также сопровождают тяжелые гемолитические трансфузионные реакции, все
пациенты с фебрильными реакциями должны быть обследованы как и при острой гемолитической трансфузионной реакции.

Большинство фебрильных реакций успешно лечится ацетаминофеном и при необходимости дифенгидрамином. Больным можно назначать ацетаминофен перед другими трансфузиями. Если у больного наблюдалось более одной фебрильной реакции, то перед следующими переливаниями можно применять специальные противолейкоцитарные фильтры. Многие клиники используют заранее приготовленные компоненты крови с низким содержанием лейкоцитов.

Аллергические реакции. Аллергическая реакция на неизвестный компонент донорской крови является распространенной реакцией и вызывается аллергенами донорской плазмы (реже антителами донора). Эти реакции обычно протекают в легкой форме, с возникновением сыпи, отека, иногда сопровождаются головокружением и головной болью в течение трансфузии или сразу после нее. Часто повышается температура. Реже встречаются ощущение, шумное дыхание, недержание мочи и кала, что указывает на генерализованный спазм гладкой мускулатуры. Изредка встречается анафилаксия, особенно у реципиентов с дефицитом IgA.

Больным с перенесенной аллергией или пост трансфузионной аллергической реакцией в анамнезе может назначаться профилактическое введение антигистаминных препаратов перед началом трансфузии (например, дифенгидрамин 50 мг внутрь). Примечание: препараты никогда нельзя смешивать с кровью. При возникновении аллергической реакции трансфузия останавливается. При помощи антигистаминных препаратов (например, дифенгидрамин 50 мг внутрь) обычно удается контролировать легкую сыпь и зуд, и трансфузия может быть продолжена. Однако при умеренно выраженных реакциях (гипераллергическая реакция) требуется назначение гидрокортизона (100–200 мг внутрь), а при тяжелой анафилактической реакции требуется дополнительное введение адреналина 0,5 мл в разведении 1:1000 поджожно и 0,9% физиологической солевого раствора внутривенно совместно с расслаблением причин реакции с банком крови. Последующие трансфузии не проводятся до полного выяснения причин. Больные с выраженными дефицитом IgА нуждаются в переливаниях отмытых эритроцитов, отмытых тромбоцитов и плазмы от IgА-дефицитных доноров.

Перегрузка объемом. Значение перегрузки объемом недооценено и занижено, недавно она была признана FDA второй самой распространенной причиной смерти, связанной с переливанием крови (20%). Высокое осмотическое давление препаратов крови увеличивает объем внутрисосудистой жидкости, что может привести к перегрузке объемом, особенно у больных, чувствительных к данному фактору (например, при сердечной или почечной недостаточности). Эритроцитарную массу необходимо переливать медленно. Больной должен находиться под наблюдением, и при возникновении признаков сердечной недостаточности (одышка, хриплое дыхание) трансфузия должна быть остановлена и начато лечение сердечной недостаточности.

Обычно назначаются диуретики, такие как фуросемид 20–40 мг внутрь. При необходимости переливания большого объема плазмы при передозировке варфарином фуросемид может применяться одновременно с началом гемотransfusion. Больные, имеющие высокий риск перегрузки объемом (при сердечной или почечной недостаточности), проходят профилактическое лечение диуретиками (фуросемид 20–40 мг внутрь).

Острое поражение легких. Связанное с трансфузий острое поражение легких является редким осложнением и обусловлено анти-HLA и/или антигранулоцитарными антителами в донорской плазме, которые агглютинируют и денатурируют гранулоциты реципиента в легких. Развивается острой респираторный синдром, и на рентгенограмме легких проявляются характерные признаки некардиогенного отека легких. Это осложнение является второй наиболее частой причиной смерти из-за гемотрансфузий (45% согласно данным Управления контроля продуктов и лекарств). Поражение возникает в 1 из 5 000–10 000 случаев. Слабо или умеренно выраженные острые легочные поражения, связанные с переливанием крови, обычно проходят...
Глава 156. Трансфузионная медицина

незамеченными. Проведение поддерживающей терапии обычно приводит к выздоровлению без долгосрочных последствий. Необходимо избегать применения диуретиков. Случаи поражения должны быть зарегистрированы.

Измененное сродство к кислороду. В крови, хранимой более 7 дней, уменьшается содержание эритроцитарного 2,3-дифосфоглицерата (ДФГ), а при хранении более 10 дней он полностью исчезает. Это исчезновение приводит к повышению сродства к O_2 и замедляет его выпуск в ткани. Имеются неубедительные доказательства, что дефицит 2,3-ДФГ является клинически значимым, кроме случаев переливания крови у детей, у больных серповидноклеточной анемией с острым коронарным синдромом и инсультом, у отдельных больных с тяжелой сердечной недостаточностью. После трансфузии эритроцитарной массы восстановление 2,3-ДФГ происходит в течение 12–24 часов.

Реакция «трансплантат против хозяина» (РТПХ) обычно обусловлена переливанием продуктов крови, содержащих иммунокомпетентные лимфоциты, больным с иммунодефицитом. Донорские лимфоциты атакуют ткани реципиента. РТПХ иногда возникает у больных с нормальным иммунитетом, если они получают кровь от доноров (обычно близкие родственники), являющихся гомозиготными по HLA-гаплотипу, для которых больной является гетерозиготным. Реакция «трансплантат против хозяина» обычно обусловлена переливанием продуктов крови, содержащих иммунокомпетентные лимфоциты, больным с иммунодефицитом. Донорские лимфоциты атакуют ткани реципиента. РТПХ иногда возникает у больных с нормальным иммунитетом, если они получают кровь от доноров (обычно близкие родственники), являющихся гомозиготными по HLA-гаплотипу, для которых больной является гетерозиготным. Симптомы и признаки включают лихорадку, кожную сыпь (центробежно распространенная сыпь становится эритродермией с буллами), тошноту, водянистую и кровянистую диарею, лимфаденопатию, панцитопению, обусловленную костномозговой аплазией. Также могут встречаться желтуха и повышение активности печеночных ферментов. РТПХ возникает в течение 4–30 дней после трансфузий и диагностируется на основании клинических признаков и биопсии кожи и костного мозга. Летальность при РТПХ превышает 90%, т.к. специфическое лечение отсутствует.

Предотвратить развитие РТПХ можно с помощью облучения (повреждая ДНК донорских лимфоцитов) всех трансфузируемых продуктов крови. Это проводится у реципиентов с иммунодефицитным состоянием (например, у больных с наследственными иммунодефицитными синдромами, гемобластозами у больных, получивших трансплантацию гемопоэтических стволовых клеток, у новорожденных), а также если донор является родственником 1-й степени или при трансфузии HLA-совместимых компонентов, кроме гемопоэтических стволовых клеток. Лечение кортикостероидами и другими иммунодепрессантами, в т.ч. теми, которые используются для трансплантаций солидных органов, не является показанием для облучения крови.

Осложнения массивного переливания. Массивными трансфузиями являются переливания, проведенные за 24 часа в объеме, превышающим или эквивалентном одному объему крови (например, 10 доз для 70-кг взрослого больного). Если пациент получает стандартную реанимационную порцию эритроцитарной массы (коллоид) плюс кристаллоид (пакталь или физиологический раствор Рингера) в таком большом объеме, то пласменные факторы свертывания крови и тромбоциты растворяются, вызывая коагулопатию (дилюционная коагулопатия). Это ухудшает коагулопатию потребления, обусловленную серьезной травмой (т.е. от обширного активации каскада свертывания), и приводит к летальному сочетанию трех факторов: ацидоз, гипотермия и кровотечение. В последнее время для массивных переливаний были разработаны протоколы, в которых свежезамороженная плазма и тромбоциты переливаются заранее при реанимации, еще до развития коагулопатии, вместо того чтобы пытаться «до-гонять потом». Такие протоколы были продемонстрированы для снижения смертности, хотя идеальное соотношение эритроцитов, плазмы и тромбоцитов все еще в стадии разработки. Рекомендации заключаются в том, чтобы дать одну порцию плазмы и один концентрат тромбоцитов для каждой двух порций крови.

Гипотермия, обусловленная быстрым переливанием большого количества холодной крови, может вызвать аритмию или острую сердечную недостаточность. Гипотермию можно предотвратить при помощи оборудования для осторожного подогрева крови. Использование других способов подогревания (например, микроволновая печь) противопоказано из-за
Раздел 12. Гематология и онкология

Потенциальной возможностью повреждения эритроцитов и гемолиза.

Цитратная и калиевая токсичность обычно не возникают даже при массивных трансфузиях, однако оба вида токсичности могут усиливаться при наличии гипотермии. Больные с печеночной недостаточностью могут испытывать трудности с метаболизмом цитрата. Гипокальциемия возникает, но редко нуждается в лечении (10 мл 10% раствора глюконата Са внутривенно разводят в 100 мл D₅W, вводится более 10 мин). У больных с почечной недостаточностью может иметь место повышение уровня калия при переливании крови со сроком хранения более 1 недели (аккумуляция калия в крови, хранимой менее 1 недели, обычно незначительна). Механический гемолиз во время трансфузии может приводить к повышению уровня калия. Гипокалиемия может возникать через 24 часа после трансфузии старых эритроцитов (более 3 недель хранения), которые аккумулируют в себе калий.

Инфекционные осложнения. Бактериальная контаминация пакетированных эритроцитов возникает редко и обусловлена несоблюдением правил асептики при заборе крови или транзиторной асимптоматической донорской бактериемией. Охлаждение эритроцитарной массы обычно ограничивает бактериальный рост, за исключением криофильных организмов, таких как Yersinia sp, которые могут производить опасный уровень эндотоксина. Все дозы эритроцитов должны ежедневно проверяться перед выдачей на предмет возможного бактериального роста, на что указывает изменение цвета препарата. Поскольку тромбоцитарный концентрат хранится при комнатной температуре, он имеет повышенный риск бактериального роста и продукции эндотоксина в случаях контаминации. Для минимизации бактериального роста срок хранения ограничивается пятью днями. Риск бактериальной контаминации тромбоцитов составляет 1:2500. Поэтому тромбоцитарный концентрат регулярно тестируется на наличие бактерий.

Иногда сифилис передается через свежую кровь или тромбоциты. Хранение крови более 96 часов при температуре 4–10 °С уничтожает спiroхеты. Хотя федеральные нормы требуют серологического тестирования донорской крови на сифилис, инфицированные доноры являются серонегативными на ранних стадиях болезни. У реципиентов инфицированной крови может возникнуть характерная вторичная сыпь. Гепатиты могут возникать после переливания любого компонента крови. Риск уменьшается при помощи вирусной инактивации при нагревании сывороточного альбумина и плазменных протеинов и при использовании рекомбинантных концентратов факторов свертывания. Тестирование на гепатит требуется для всей донорской крови (табл. 156–2). Риск возникновения гепатита В составляет 1:200 000, гепатита С 1:1,5 млн. Из-за кратковременной виремической фазы и сопутствующих клинических проявлений, предотвращающих сдачу крови, гепатит А (инфекционный гепатит) не является частой причиной гепатитов, возникших из-за переливания.

ВИЧ-инфекция в США почти полностью представлена ВИЧ-1, хотя случаи ВИЧ-2 также вызывают беспокойство. Тестирование на антитела к обоим вирусам является обязательным. Также требуется тестирование нуклеиновой кислоты на антиген ВИЧ-1, так же как и ВИЧ-1 p24 антиген. Дополнительно доноров крови рассматривают об образе жизни, который может привести к высокому риску заражения ВИЧ-инфекцией. ВИЧ-0 не идентифицирован среди доноров крови. Риск заражения ВИЧ при переливании составляет 1:2,6 млн.

Цитомегаловирус (ЦМВ) может передаваться через лейкоциты переливаемой крови. Вирус не передается через свежезамороженную плазму. Так как вирус не вызывает заболевания у реципиентов с нормальным иммунитетом, рутинное тестирование антител к ЦМВ не требуется. Однако ЦМВ может вызывать тяжелое или смертельное заболевание у иммуносупрессивных больных, которые должны получать ЦМВ-отрицательные продукты крови от доноров, не имеющих антител к ЦМВ, или необходимо проводить удаление лейкоцитов из крови с помощью фильтров.

Человеческий Т-клеточный лимфотропный вирус I типа (HTLV-I), который может быть причиной Т-клеточной лимфомы/лейкоза у взрослых, HTLV-I-вызванной миелопатии, тро-
Глава 156. Трансфузионная медицина

Трансфузия больных с патологическим спастическим парапарезом, вызывает посттрансфузионную сероконверсию у некоторых больных. Все доноры крови тестируются на антитела к HTLV-I и HTLV-II. Риск ложноотрицательного результата при тестировании донорской крови составляет 1 к 641 000.

Хотя передача болезни Крейцфельдта–Якоба никогда не была зарегистрирована при трансфузиях, текущая практика препятствует донации крови лицам, получавшим гормон роста человеческого происхождения, трансплантат твердой мозговой оболочки или членов семей которых больны болезнью Крейцфельдта–Якоба. Новый вариант болезни Крейцфельдта–Якоба (болезнь коровьего бешенства) не передается при переливании крови. Однако доноры, которые провели значительное время в Великобритании и некоторых частях Европы, временно отстраняются от сдачи крови (табл. 156–1).

Малярия легко передается через инфицированные эритроциты. Многие доноры не подозревают, что они инфицированы малярией, которая может протекать латентно и передаваться в течение 10–15 лет. Хранение крови не предотвращает передачи возбудителя малярии. Возможных доноров необходимо опросить о малярии, а также о посещении регионов, где возможно заражение. Доноры, которые перенесли малярию или являются иммигрантами или гражданами из эндемичных стран, получают отказ в донации крови в течение 1 года.

Бабезиоз редко передается при трансфузиях.

ТЕРАПЕВТИЧЕСКИЙ АФЕРЕЗ

Терапевтический аферез включает плазмаферез и цитаферез, которые обычно являются допустимыми для здоровых доноров. Однако имеется множество небольших и несколько крупных рисков. Установка внутривенных катетеров, необходимых для проведения афереза, может вызывать осложнения (кровотечение, инфекции, пневмоторакс). Цитратный антикоагулянт может снижать содержание ионизированного кальция в сыворотке. Замещение плазмы крови неколлоидными растворами (например, физиологическим раствором) приводит к перемещению жидкости во внесосудистое пространство. Коллоидные растворы не замещают IgG и факторы свертывания.

Большинство осложнений можно контролировать при помощи пристального наблюдения за состоянием больного и проведения необходимых процедур. Хотя иногда и возникают некоторые тяжелые реакции и отдельные смертельные случаи.

Обмен плазмой. Терапевтический плазмаферез удаляет плазменные компоненты из крови. Сепаратор клеток крови удаляет плазму больного и возвращает эритроциты и тромбоциты или плазмозамещающие растворы; для этой цели 5% альбумин является более предпочтительным, чем свежезамороженная плазма (за исключением больных с тромбоцитопенической пурпурой), т.к. он вызывает меньше трансфузионных реакций и не переносит инфекции. Терапевтический плазмаферез имеет сходство с диализом, но в дополнение к нему способен удалять протеинсвязанные токсические субстанции. Обмен одного объема плазмы убирает около 66% таких компонентов.

Для максимальной пользы плазмафереза необходимо использовать при заболеваниях, когда плазма содержит известные патогенные субстанции и плазмаферез может удалять эти субстанции быстрее, чем организм производит их. Например, при быстропрогрессирующих аутоиммунных заболеваниях плазмаферез может применяться для удаления вредных плазменных компонентов (например, криоглобулины, антигломерулярные антитела), в то время как иммуносупрессивные или цитотоксические препараты нарушают их производство.

Существует огромное количество показаний для плазмафереза (табл. 156–3). Частота плазмафереза, объем удаленной плазмы, тип замещающего раствора и другие параметры индивидуальны. Липопротеиновый холестерин низкой плотности можно удалять при помощи плазмафереза с недавно предложенным инструментальным методом фильтрации. Осложнения после плазмафереза сходны с осложнениями терапевтического цитафереза. Показания для плазмафереза даются в соответствии с реко-
<table>
<thead>
<tr>
<th>КАТЕГОРИЯ</th>
<th>ПЛАЗМАФЕРЕЗ</th>
<th>ЦИТАФЕРЕЗ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Принята в качестве первостепенной терапии Проводится опосредованно или совместно с другим лечением</td>
<td>АЦА-опосредованный быстро развивающийся гломерулонефрит (гранулематоз Вегенера), находящийся в диалазе или с диффузными альвеолярными кровоизлияниями Заболевание антигломерулярных антител базальной мембраны (синдром Гулпачера), находящихся в диалазе или с диффузными альвеолярными кровоизлияниями Хроническая воспалительная демиелинизирующая полирадикулоневропатия Тяжелая форма криоглобулинемии Рецидивирующий очаговый сегментарный гломерулосклероз Синдром Гийена–Барре Гемолитико-уремический синдром, атипичный вследствие аутоантител к фактору H Повышенная вязкость при моноклональной гаммапатии Миастения PANDAS (педиатрическое аутоиммунное нервно-психическое расстройство, связанное со стрептококковой инфекцией) Парапротеинемическая полинейропатия с IgG / IgA, IgM (с или без макроглобулинемии Вальденстрема) Отторжение трансплантата при почечной трансплантации Хорея Сиденхайма Тромбоцитовая тромбоцитопеническая пурпура Optimalная роль афереза не установлена, решение должно быть индивидуальным (подтвержденным Экспертным советом организации)</td>
<td>Бабезиоз, тяжелая форма: обмен эритроцитами Кожная T-клеточная лихем, эритродермическая: фотоферез Семейная гиперхолестеринемия (гомозиготы): всасывание липидов Отторжение трансплантата сердца (профилактика): фотоферез Гиперлейкоцитоз с лейкостазом: лейкодеплация Заболевание серповидной клетки с острым инсультом: обмен эритроцитами</td>
</tr>
<tr>
<td>Оптимальная роль афереза не установлена, решение должно быть индивидуальным (подтвержденным Экспертным советом организации)</td>
<td>Острая печеночная недостачность Аплазическая анемия Тепла аутоиммунная гемолитическая анемия Дилатационная кардиомиопатия (класс II к IV Нью-Йоркской кардиологической ассоциации) Отторжение трансплантата сердца (опосредованный антителами) Наследственный гемохроматоз Множественная миелома с полинейропатией Расовый склероз (прогрессивный) Паранеопластический неврологический синдром Посттрансфузионная пурпура Прогрессирующий системный склероз Тиреотоксический криз</td>
<td>Ингибиторы фактора свертывания крови: иммуноабсорбция Незащитемимическая кожная T-клеточная лихем: лейкодеплация Некожные РТПХ: фотоферез Обыкновенная пузырчатка: фотоферез Истинная полицитемия или эритроцитоз: деплация тромбоцитов</td>
</tr>
</tbody>
</table>
Глава 157. Общие представления о раке

Системный амилоидоз
Амикотропический латеральный склероз
Реанимация при ожоговом шоке
Ингибиторы фактора свертывания
Дерматомиозит или полиимиозит
Типичный или связанный с диареей гемолитико-уремический синдром
Иммунная тромбоцитопеническая пурпура
Внутриклеточный миозит
Одноклеточная пурпура
POEMS (дискинезия плазменных клеток с полинейропатией, органопатиями, эндокринопатиями, моноклональными белками и изменениями кожи)
Псевдоот
Ретинотропный артрит
Синдром Стивенса
АЦА — антинейтрофильные цитоплазматические антитела.

157 Общие представления о раке

Рак — это нерегулируемая пролиферация клеток, обусловленная генетическим нарушением, приводящая к бело- или вредоносному росту, недостаточной дифференцировке клеток, местной инвазии в ткани и, часто, метастазированию. Рак может развиваться в любой ткани или органе независимо от возраста. Часто обнаруживается развитие иммунологического ответа на опухоль, но роль иммунной системы в предотвращении и лечении рака все еще не до конца ясна.
Многие онкологические заболевания излечимы, если выявляются на ранней стадии, на поздних же стадиях часто возможна длительная ремиссия. Однако лечение возможно не всегда и не применяется при распространенных стадиях, когда паллиативное лечение обеспечивает более высокое качество жизни, чем агрессивное лечение, в частности у пожилых пациентов или у пациентов с сопутствующими заболеваниями.

Клеточная и молекулярная основа опухолевого роста

Клеточная кинетика

Время деления – время, необходимое покоящейся клетке для совершения полного цикла клеточного деления (рис. 157–1) и для появления 2 дочерних клеток. Злокачественные клетки обычно имеют более короткий жизненный цикл, чем незлокачественные клетки той же ткани, и обычно имеют меньшее количество клеток в фазе G_0 (фазе покоя). За началным экспоненциальным ростом опухоли следует фаза плато, где смертность клеток и образование дочерних клеток находитя примерно на одном уровне. Замедление роста клеток скорее всего связано с истощением запасов питательных веществ и кислорода в быстроращующейся опухоли. В малых опухолях доля активно делящихся клеток гораздо выше, чем в опухолях больших размеров.

Знание клеточной кинетики отдельных опухолей – важный аспект в создании антиополагических препаратов и может повлиять на дозировка и временные интервалы терапии. Многие противопухолевые препараты эффективны, только если клетки активно делятся, другие – в определенной фазе клеточного цикла и потому требуют длительного назначения, чтобы поймать клетки в фазу наибольшей чувствительности.

Опухолевый рост и метастазы

Растущая опухоль получает питательные вещества путем прямой диффузии из кровотока. Местный рост обеспечивается ферментами (например, протеазами), которые уничтожают прилежащие ткани. В то время как объем опухоли увеличивается, вырабатываются опухолевые факторы ангиогенеза для формирования новых сосудов, необходимых для дальнейшего опухолевого роста.

Практически с самого начала опухоль может выпускать клетки в кровоток. В моделях на животных опухоль размером 1 см в среднем вырабатывает >1 млн клеток в сутки в венозное русло. Несмотря на то что большинство циркулирующих клеток погибает в результате внутрисосудистой травмы, некоторые клетки могут адгезировать на эндотелий сосудов и проникать в окружающие ткани, вызывая появление независимых опухолей (метастазов) в отдаленных местах. Метастатические опухоли растут по тому же принципу, что и первичные опухоли, и в последствии могут порождать другие метастазы.

Экспериментально показано, что через случайную мутацию группа клеток в первичной опухоли может приобрести способность мигрировать и инвазироваться в отдаленные органы, вызывая метастазирование.

Молекулярные нарушения

Причиной появления злокачественных клеток в большинстве случаев являются генетические мутации. Они изменяют количество или функцию белковых структур, которые регулируют рост и деление клеток, а также репарацию ДНК. Две большие группы мутировавших генов составляют онкогены и гены, подавляющие опухолевой рост.

Онкогены. Онкогены представляют собой аномальные формы нормальных генов (про-
Глава 157. Общие представления о раке

тоонкогены), которые регулируют различные процессы клеточного роста. Мутация этих генов может привести к прямой и продолжительной стимуляции сигнальных путей (например, внутриклеточных путей передачи сигналов, факторов транскрипции, вырабатываемых факторов роста), которые контролируют клеточный рост и деление, репарацию ДНК, антигенез и другие физиологические процессы.

Существует >100 известных онкогенов, которые могут участвовать в неопластической трансформации клеток человека. Например, ген ras кодирует белок Ras, контролирующий деление клеток. Мутации могут привести к патологической активации белка Ras, приводящей к неконтролируемому росту и делению клеток. На самом деле, нарушения белка Ras отмечены у 25% людей, больных раком. Другие онкогены участвуют в патогенезе отдельных онкологических заболеваний. К ним относятся:

- Her2/neu (рак молочной железы);
- BCR-ABL (хронический миелолейкоз, В-клеточный острый лимфобластный лейкоз);
- C-myc (лимфома Беркитта);
- N-myc (мелкоклеточный рак легкого, нейробластома).

Специфические онкогены могут иметь большое значение для постановки диагноза, выбора терапии и определения прогноза (см. описание отдельных онкологических заболеваний).

Онкогены обычно являются результатом приобретенных соматических клеточных изменений в результате точечных мутаций (например, из-за химических карциногенов), амплификации генов (например, увеличение количества копий нормального гена) или транслокаций. Иногда мутации генов способствуют передаче предрасположенности к раку по наследству, как, например, наследование BRCA1 или BRCA2 в семьях с частыми случаями развития рака молочной железы или рака яичников.

Гены супрессора опухолевого роста. Такие гены, как p53, участвуют в нормальном делении клетки и восстановлении ДНК, а также чрезвычайно важны для выявления нарушенного сигнала роста в клетках. Если эти гены в результате наследственной или приобретенной мутации перестанут функционировать, генетические мутации в других генах могут пройти незамеченными, что ведет к неопластической трансформации.

Как и во всех генах, каждый опухоль-подавляющий ген кодирует 2 аллели. Дефектная копия гена может наследоваться, оставляя в гене-супрессоре одну работающую аллель. Если аллель также мутирует, нормальные защитные механизмы гена-супрессора утрачиваются, и дисфункция других белков или поражение ДНК могут выйти из-под контроля, что приведет к развитию опухоли. Например, ген ретиноblastомы (RB) кодирует белок Rb, который регулирует клеточный цикл, тормозя репликацию ДНК. Мутации гена RB встречаются у больных разными онкологическими заболеваниями, обеспечивая непрерывное деление пораженных клеток.

Другой важный регуляторный белок, p53, предотвращает репликацию поврежденной ДНК в нормальных клетках и вызывает клеточную смерть (апоптоз) в клетках с аномальной ДНК. Неактивный или измененный p53 позволяет клеткам с аномальной ДНК выживать и делиться. Мутации передаются дочерним клеткам вместе с высокой возможностью неопластических трансформаций. Ген p53 поражается при многих онкологических заболеваниях. Так же как и у онкогенов, мутация генов супрессоров опухолевого роста, таких как p53 или RB, в линиях герминных клеток может привести к вертикальной передаче и более высокой частоте возникновения рака у потомства.

Хромосомные нарушения. Грубые хромосомные нарушения могут случиться в результате деления, транслокации или дупликации. Если эти изменения активируют или инактивируют гены, изменения в которых приводят к усилению пролиферации по сравнению с нормальными клетками, это может привести к развитию опухоли. Хромосомные нарушения встречаются при некоторых онкологических заболеваниях (табл. 157–1). При некоторых врожденных заболеваниях (синдром Блума, анемия Фанкони, синдром Дауна) процессы репарации ДНК нарушены и хромосомы легко повреждаются, вызывая высокий риск развития лейкозов или лимфом у детей.
Другие изменения. При большинстве онкологических заболеваний обычно встречается несколько описанных выше механизмов, которые ведут к неопластической трансформации. Например, при семейном полипозе развитие опухоли происходит из последовательности генетических механизмов: гиперпролиферация эпителия (потеря гена-супрессора хромосомы 5), ранняя аденома (изменение в процессе метилирования ДНК), промежуточная аденома (гиперактивность онкогена ras), поздняя аденома (потеря гена-супрессора хромосомы 18) и, наконец, рак (потеря гена хромосомы 17). Для метастилизации могут потребоваться дополнительные генетические изменения.

Теломеры представляют собой нуклеопroteinовые комплексы, которые защищают концы хромосом и поддерживают их целостность. В нормальной ткани укорочение теломер в результате старения приводит к ограничению клеточного деления. Фермент теломераза обеспечивает синтез и поддержание нормального состояния теломер; таким образом, теломераза потенциально может обеспечить клеточное бессмертие. Активация теломеразы в опухоли приводит к ее продолжительной пролиферации.

Факторы окружающей среды

Инфекции. Вирусы также вносят свой вклад в патогенез рака (табл. 157–2). Патогенез может включать в себя интеграцию вирусных генетических элементов в ДНК хозяина. Эти новые гены экспрессируются в клетках хозяина; они могут повлиять на клеточный рост или деление или повредить нормальные гены хозяина, ответственные за контроль над клеточным ростом и делением. Также вирусная инфекция может вызвать нарушения иммунной системы, что приводит к пониженному иммунному надзору над ранними опухолями.

Бактерии также могут вызывать рак. Инфицирование Helicobacter pylori повышает риск развития некоторых онкологических заболеваний (аденокарцинома желудка, лимфома желудка, мукозоассоциированная лимфома [MALT]).

Некоторые паразиты могут привести к образованию рака. Schistosoma haematobium

ТАБЛ. 157–1. ОНКОЛОГИЧЕСКИЕ ЗАБОЛЕВАНИЯ, АССОЦИРОВАННЫЕ С ХРОМОСОМНЫМИ НАРУШЕНИЯМИ

<table>
<thead>
<tr>
<th>КАТЕГОРИЯ</th>
<th>ПРИМЕРЫ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лейкозы</td>
<td></td>
</tr>
<tr>
<td>Лимфоидные</td>
<td>Острый лимфобластный лейкоз</td>
</tr>
<tr>
<td></td>
<td>Хронический лимфолейкоз</td>
</tr>
<tr>
<td>Миелоидные</td>
<td>Острый моноцитарный лейкоз</td>
</tr>
<tr>
<td></td>
<td>Острый миелоидный лейкоз с созреванием</td>
</tr>
<tr>
<td></td>
<td>Острый миелоидный лейкоз с эозинофилией</td>
</tr>
<tr>
<td></td>
<td>Острый нелимфобластный лейкоз</td>
</tr>
<tr>
<td></td>
<td>Хронический миелолейкоз</td>
</tr>
<tr>
<td></td>
<td>Вторичный острый миелоидный лейкоз</td>
</tr>
<tr>
<td>Лимфомы</td>
<td>Беркитта</td>
</tr>
<tr>
<td></td>
<td>Некоджкинские</td>
</tr>
</tbody>
</table>

Солидные опухоли

<table>
<thead>
<tr>
<th>Категория</th>
<th>Примеры</th>
</tr>
</thead>
<tbody>
<tr>
<td>Доброкачественные</td>
<td>Аденомы толстой кишки</td>
</tr>
<tr>
<td></td>
<td>Менингиома</td>
</tr>
<tr>
<td></td>
<td>Смешанные опухоли слюнной железы</td>
</tr>
<tr>
<td>Аденокарциномы</td>
<td>Мочевого пузыря</td>
</tr>
<tr>
<td></td>
<td>Толстой кишки</td>
</tr>
<tr>
<td></td>
<td>Почки</td>
</tr>
<tr>
<td></td>
<td>Яичников</td>
</tr>
<tr>
<td></td>
<td>Предстательной железы</td>
</tr>
<tr>
<td></td>
<td>Мелкоклеточный рак легкого</td>
</tr>
<tr>
<td></td>
<td>Матки</td>
</tr>
<tr>
<td>Саркомуы</td>
<td>Саркома Юинга</td>
</tr>
<tr>
<td></td>
<td>Висцеральная миелоидная хондроосаркома</td>
</tr>
<tr>
<td></td>
<td>Миелоидная липосаркома</td>
</tr>
<tr>
<td></td>
<td>Периферическая нейролипома</td>
</tr>
<tr>
<td></td>
<td>Альвеолярная рабдомиосаркома</td>
</tr>
<tr>
<td></td>
<td>Синонимальная саркома</td>
</tr>
<tr>
<td>Другое</td>
<td>Злокачественная меланома</td>
</tr>
<tr>
<td></td>
<td>Мелотелиома</td>
</tr>
<tr>
<td></td>
<td>Нейробластома</td>
</tr>
<tr>
<td></td>
<td>Ретиnobластома</td>
</tr>
<tr>
<td></td>
<td>Тестicularный или овариальный дисгерминома</td>
</tr>
<tr>
<td></td>
<td>Опухоль Вильсма</td>
</tr>
</tbody>
</table>

ТАБЛ. 157–2. ВИРУСЫ, АССОЦИРОВАННЫЕ С ОНКОЛОГИЧЕСКИМИ ЗАБОЛЕВАНИЯМИ

<table>
<thead>
<tr>
<th>ВИРУС</th>
<th>АССОЦИРОВАННАЯ ЗЛОКАЧЕСТВЕННАЯ ОПУХОЛЬ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вирус Эпштейна – Барр</td>
<td>Лимфома Беркитта</td>
</tr>
<tr>
<td>Вирусы гепатита В или С</td>
<td>Гепатоцеллюлярная карцинома</td>
</tr>
<tr>
<td>Гептрс – вирус человека 8 типа</td>
<td>Гепатоцеллюлярная карцинома</td>
</tr>
<tr>
<td>Вирус папилломы человека</td>
<td>Саркома Капоши</td>
</tr>
<tr>
<td>Т-лимфотропный вирус человека</td>
<td>Рак анаплазмного канала</td>
</tr>
<tr>
<td></td>
<td>Рак шейки матки</td>
</tr>
<tr>
<td></td>
<td>Рак головы и шеи</td>
</tr>
<tr>
<td></td>
<td>Т-клеточные лимфомы</td>
</tr>
</tbody>
</table>
Глава 157. Общие представления о раке

вызывает хроническое воспаление и фиброз мочевого пузыря, что может привести к раку. O. sinensis связывают с карциномой поджелудочной железы и желчных протоков.

Облучение. Ультрафиолетовое излучение может индуцировать рак кожи (например, базально- и чешуйчато-клеточная карцинома, меланома), повреждая ДНК. Это повреждение ДНК заключается в образовании тимидиновых димеров, которые могут не разрушаться из-за наследственных дефектов починки ДНК (например, пигментная ксеродерма) или в результате редких, случайных событий.

Ионизирующее облучение также является канцерогенным. Например, у выживших после взрывов атомных бомб в Хиросиме и Нагасаки выявили риск развития лейкозов и других видов рапа выше, чем в общей популяции. Аналогично с этим использование в прошлом рентгеновского излучения для лечения незлокачественных болезней (акне, увеличение размеров тимуса или аденоидов, анкилозирующий спондилит) приводило к высокой частоте развития острых и хронических лейкозов, ходжкинских и неходжкинских лимфом, множественной миеломы, аплазической анемии с исходом в острый нелимфобластный лейкоз, миелофиброза, меланомы и рака щитовидной железы.

Лекарственные средства и химические вещества. Эстроген в оральных контрацептивах может немного повышать риск развития рака молочной железы, но этот риск со временем снижается. Эстроген и прогестин, используемые в качестве заместительной терапии, также повышают риск развития рака молочной железы. Дизтилстилюбострол (ДЭС) увеличивает риск развития рака молочной железы у женщин, принимавших его, а также повышает риск вагинальной карциномы у девочек и женщин, чьи матери применяли его во время беременности. Длительное использование анаболических стероидов может повысить риск возникновения рака печени. Терапия рака с использованием химиотерапии и лучевой терапии повышает риск развития вторичного рака.

Химические канцерогены могут индуцировать генные мутации и приводить к неконтролируемому росту и образованию опухоли (табл. 157–3). Другие вещества, называемые коканцерогенами, не имеют или имеют небольшой раковый потенциал, но усиливают эффект других агентов при совместном воздействии.

Нутритивные факторы. Определенные вещества, употребляемые в пищу, могут повысить риск развития рака. Так, диета, богатая жиром, повышает риск развития рака толстой кишки, молочной железы и, возможно, рака простаты. Люди, употребляющие алкоголь в больших количествах, находятся под большим риском развития рака пищевода. Диета, богатая конечными и соленьями или жареным мясом, повышает риск развития рака желудка. У людей, страдающих от избыточного веса или ожирения, повышен риск возникновения рака молочной железы, эндометрия, толстой кишки, почек и пищевода.

Физические факторы. Хроническое раздражение кожи ведет к хроническому дерматиту, а в редких случаях к плоскоклеточному раку. Причиной этого могут быть случайные мутации, которые происходят более часто вследствие ускорения клеточного цикла.

Иммунные расстройства

Дисфункция иммунной системы, вызванная наследственными генетическими мутациями,
Раздел 12. Гематология и онкология

приобретенными расстройствами, старением или действием иммунодепрессантов, мешает нормальному иммунному контролю над ранни-

ми опухолями и приводит к высокому риску развития рака. Известные иммунные расстройства, связанные с раком включают:

■ атаксию-телангиэктазию (острый лимфо-блástный лейкоз [ОЛЛ], опухоли мозга, рак желудка);
■ синдром Вискотта–Олдрича (лимфомы, ОЛЛ);
■ Х-сцепленная агаммаглобулинемия (лимфомы, ОЛЛ);
■ вторичный иммунодефицит из-за иммунодеpressãoитов или ВИЧ-инфекции (крупноклеточная лимфома, саркома Капоши);
■ ревматологические состояния, такие как системный волчаночный эритематоз, ревматоидный артрит и синдром Шегрена (B-клеточная лимфома);
■ общие иммунные расстройства (лимфоретикулярная неоплазия).

ДИАГНОСТИКА РАКА

Диагностика рака может основываться на анамнезе и физикальном осмотре, но требует подтверждения биопсией опухоли и гистопатологическим исследованием.

Наиболее полный сбор анамнеза и физикальное обследование могут выявить неожиданные признаки проявления раннего рака.

Анамнез

Терапевты должны быть осведомлены о предрасполагающих факторах и при сборе анамнеза уделять особое внимание вопросам о случаях семейного рака, образе жизни (включая курение) и прошлых или настоящих заболеваниях (например, иммунных расстройствах, предшествовавшей иммуносупрессивной терапии, гепатите В или С, ВИЧ-инфекции, положительном тесте Папаниколау, инфицировании папилломавирусом человека). Симптомы, выявляющие предположить наличие оккультного рака, могут включать:

■ слабость;
■ потерю веса;
■ лихорадку;
■ ночные поты;
■ кашель;
■ кровохарканье;
■ кровавую рвоту;
■ кровавый стул;

Табл. 157–3. РАСПРОСТРАНЕННЫЕ ХИМИЧЕСКИЕ КАНЦЕРОГЕНЫ

<table>
<thead>
<tr>
<th>КАНЦЕРОГЕНЫ</th>
<th>РАК</th>
</tr>
</thead>
<tbody>
<tr>
<td>Канцерогены окружающей среды и индустриальные</td>
<td></td>
</tr>
<tr>
<td>Ароматические амины</td>
<td>Рак мочевого пузыря</td>
</tr>
<tr>
<td>Мышьяк</td>
<td>Рак легкого</td>
</tr>
<tr>
<td>Асбест</td>
<td>Рак легкого, Мезотелиома</td>
</tr>
<tr>
<td>Бензол</td>
<td>Лейкозы</td>
</tr>
<tr>
<td>Хроматы</td>
<td>Рак легкого</td>
</tr>
<tr>
<td>Волокна</td>
<td>Рак легкого</td>
</tr>
<tr>
<td>Краски для волос</td>
<td>Рак мочевого пузыря</td>
</tr>
<tr>
<td>Формальдегид</td>
<td>Лейкозы</td>
</tr>
<tr>
<td>Искусственные минеральные волокна</td>
<td>Рак легкого</td>
</tr>
<tr>
<td>Никель</td>
<td>Рак легкого, Рак носовых пазух</td>
</tr>
<tr>
<td>Красящие вещества</td>
<td>Рак легкого</td>
</tr>
<tr>
<td>Пестициды, не содержащие мышьяк</td>
<td>Рак легкого</td>
</tr>
<tr>
<td>Радон</td>
<td>Рак легкого</td>
</tr>
<tr>
<td>Лучевая терапия</td>
<td>Лейкозы</td>
</tr>
<tr>
<td>Ультрафиолетовое излучение</td>
<td>Рак кожи</td>
</tr>
<tr>
<td>Винилхлорид</td>
<td>Ангиосаркома печени</td>
</tr>
</tbody>
</table>

Образ жизни

Орехи Бетель	Рак ротовой полости
Табак	Рак мочевого пузыря
Рак шейки матки	Рак пищевода
Рака печени	Рак печени
Рак желудка	Рак желудка

Лекарственные препараты

Алкилирующие препараты	Лейкозы
При внутривагинальном введении – рак шейки матки, рак влагалища	
Оксимиеталон	Рак печени

*Медицинские работники, имеющие контакт с противоопухолевыми препаратами, также имеют риск развития нежелательных эффектов, связанных с репродуктивной способностью.

диагностика рака может основываться на анамнезе и физикальном осмотре, но требует подтверждения биопсией опухоли и гистопатологическим исследованием. Наиболее полный сбор анамнеза и физикальное обследование могут выявить неожиданные признаки проявления раннего рака.

Анамнез

Терапевты должны быть осведомлены о предрасполагающих факторах и при сборе анамнеза уделять особое внимание вопросам о случаях семейного рака, образе жизни (включая курение) и прошлых или настоящих заболеваниях (например, иммунных расстройствах, предшествовавшей иммуносупрессивной терапии, гепатите В или С, ВИЧ-инфекции, положительном тесте Папаниколау, инфицировании папилломавирусом человека). Симптомы, выявляющие предположить наличие оккультного рака, могут включать:

■ слабость;
■ потерю веса;
■ лихорадку;
■ ночные поты;
■ кашель;
■ кровохарканье;
■ кровавую рвоту;
■ кровавый стул;
Глава 157. Общие представления о раке

■ нарушения пищеварения;
■ постоянную боль.

Осмотр
Особое внимание должно уделяться исследованию кожи, лимфатических узлов, легких, молочных желез, живота и яичек. Исследования простаты, прямой кишки и влагалища также имеют важную роль. Находки помогают планировать дальнейшее исследование, включая рентгенологическое исследование и биопсию.

Обследование
Обследование включает методы визуализации, обнаружение маркеров опухоли в сыворотке и биопсию.

К методам визуализации относятся рентгенологическое исследование, ультразвуковое исследование, КТ и МРТ. Эти исследования помогают выявить аномалии, определяя качественный состав ткани, создавая объемную модель и устанавливая связи с окружающими структурами, что может быть важно для принятия решения об операции или биопсии.

Опухолевые маркеры в сыворотке крови могут служить решающим фактором у пациентов, у которых подозревается определенное онкологическое заболевание. За некоторым исключением (например, простат-специфический антиген [ПСА]), эти маркеры не имеют достаточной чувствительности и специфичности для скрининга рака. Они наиболее полезны для обнаружения раннего рецидива и оценки ответа на терапию. С этой целью широко применяются:
■ альфа-фетопroteин (гепатоцеллюлярная карцинома, карцинома яичка);
■ раковый эмбриональный антиген (рак толстой кишки);
■ бета-хорионический гонадотропин (хорионкарцинома, карцинома яичка);
■ иммуноглобулины сыворотки (множественная миелома);
■ исследование ДНК (например, исследование \(bcr \) для определения изменений хромосомы 22 при хроническом миелолейкозе);
■ СА 125 (рак яичника);
■ СА 27–29 (рак молочной железы);
■ ПСА (рак простаты).

Биопсия для подтверждения диагноза и определения тканевого происхождения необходимо практически всегда, когда онкологическое заболевание подозревается или выявлено. Выбор места биопсии обычно определяется простотой доступа и инвазивностью процедуры. Если имеется лимфаденопатия, то тонкоигольная или кор-биопсия могут позволить определить вид опухоли; если они неинформативны, проводится открытая биопсия. Другие варианты биопсии включают бронхоскопию для легко доступных опухолей средостения или опухолей центральных отделов легких, чрескожную биопсию печени при поражении печени и биопсию под контролем КТ или УЗИ. Если выполнение этих процедур невозможно, может понадобиться открытая биопсия.

Степень злокачественности опухоли является гистологическим критерием, определяющим агрессивность опухоли и предоставляющим важную прогностическую информацию. Она определяется при исследовании биопсийного материала. Данные о степени злокачественности основываются на изучении внешнего вида опухолевых клеток, их ядер, цитоплазмы, нуклеола, количества митозов, распространенности некроза. В настоящее время для многих онкологических заболеваний разработаны шкалы по определению степени злокачественности.

Молекулярные исследования, такие как определение хромосомных аналогов, флуоресцентная гибридизация in situ, ПЦР и анализ поверхностных клеточных антител (например, при лимфомах, лейкозах), позволяют определить происхождение метастатических поражений из неизвестного первичного рака или помогают установить резистентность к химиотерапии (например, при остром миелоидном лейкозе).

Стадирование
После получения гистологического заключения определение стадии (степени распространенности) помогает назначить терапию и определить прогноз. Для этого используются данные из истории болезни, физикального обследования, визуализирующих методов исследования, лабораторных тестов и биопсии костного мозга,
лимфатических узлов или других мест, подозрительных относительно наличия патологии. Стадирование конкретных новообразований описано в главах, посвященных соответствующему органу.

Методы визуализации. Методы визуализации, особенно КТ и МРТ, позволяют выявить метастазы в мозг, легкие или органы брюшной полости, включая надпочечники, забрюшинные лимфоузлы, печень и селезенку. МРТ (с контрастом гадолинием) является методом выбора для распознавания и оценки опухолей мозга, как первичных, так и вторичных. Все чаще используется ПЭТ-сканирование для определения метаболической активности подозрительных лимфатических узлов или тканей. Интегрированная ПЭТ-КТ может также быть полезной, особенно при раке легкого, груди и молочной железы, а также при лимфомах.

Ультразвуковое исследование может быть использовано для изучения орбиты, щитовидной железы, сердца, перикарда, печени, поджелудочной железы, почек и забрюшинного пространства. С его помощью можно направлять чрескожные биопсии и отличить почечноклеточную карциному от доброкачественной почечной кисты.

Ядерное сканирование позволяет выявить некоторые виды метастазов. Сканирование костей выявляет аномалии роста костей (например, остеобластную активность) до того, как она становится видимой при рентгенологическом исследовании. Таким образом, эта техника бесполезна при истинно лимфатических новообразованиях (например, множественной миеломе); при таких патологиях методом выбора является рутинное рентгенологическое исследование костей.

Лабораторные методы. Биохимический анализ крови и исследование ферментов могут помочь в определении стадии. Повышение уровня печеночных ферментов (щелочной фосфатазы, ЛДГ, АЛТ) позволяет предположить наличие метастазов в печени. Повышенный уровень щелочной фосфатазы и кальция в сыворотке крови может быть первым признаком метастазов в костях. Высокий уровень мочевины или креатинина может указывать на обструкцию мочевыводящих путей опухолевым образованием таза, нарушение функции почек из-за отложения в канальцах протеина мно-

жественной миеломы или мочекислую нефропатию из-за лимфомы или других видов рака. Уровень мочевой кислоты часто повышается при миелопролиферативных и лимфопролиферативных заболеваниях.

Инвазивные методы. Медиастиноскопия особенно важна при определении стадии немелкоклеточного рака легкого. При обнаружении поражения медиастинальных лимфоузлов торакотомия с резекцией легкого неэффективна, необходимо назначение химиолучевой терапии с последующей резекцией опухоли.

Аспирация и биопсия костного мозга особенно важны для определения распространенности лимфом и мелкоклеточного рака легкого; расширяется их значение в диагностике рака молочной и предстательной железы. Поражение костного мозга выявляется у 50–70% больных лимфомами (низкой и промежуточной степени злокачественности) и у 15–18% больных мелкоклеточным раком легкого. Биопсия костного мозга должна выполняться больным с гематологическими нарушениями (анемия, тромбоцитопения, панцитопения), которые не могут быть объяснены другими причинами.

Биопсия регионарных лимфоузлов является частью обследования при многих опухолях, таких как рак молочной железы, легкого, толстой кишки. Скрининг рака

Скрининг рака

Рак иногда может быть выявлен у бессимптомных пациентов при регулярном физикальном обследовании и скрининговых исследованиях.

Исследования, направленные на выявление рака щитовидной железы, полости рта, кожи, лимфатических узлов, яичек, простаты и яичников, должны выполняться при рутинном клиническом обследовании.

Скрининговое обследование проводится у лиц с высоким риском развития рака без симптомов заболевания. Выявление рака на ранних, излечимых стадиях позволяет снизить смертность от этого заболевания. Раннее обнаружение позволяет проводить менее радикальную терапию и снизить стоимость лечения. Однако, существует риск ложноположительных
результатов, которые требуют подтверждающих исследований (например, биопсии, эндоскопии), которые могут вызывать беспокойство пациента, быть болезненными и сопровождаться большими затратами, и ложноотрицательных результатов, которые могут вызвать ошибочное чувство безопасности, из-за чего пациенты могут игнорировать последующие симптомы.

Скрининг необходимо проводить в следующих ситуациях:

- когда можно выделить явные группы риска (например, люди с определенными инфекциями, подвергшиеся воздействию канцерогенных агентов или с определенным стилем жизни);
- когда патология имеет бессимптомный период, во время которого терапия может изменить прогноз;
- когда заболеваемость патологией очень высока;
- когда возможно доступное и эффективное вмешательство, которое влияет на течение патологии.

Скрининговые исследования должны отвечать следующим критериям:

- разумная цена и удобство выполнения;
- достоверность и воспроизводимость результатов;
- адекватные чувствительность и специфичность;
- высокая положительная предсказуемая ценность (вероятность того, что у человека с положительным результатом имеется или развивается патология) у контингента скрининга, небольшое количество ложноположительных результатов;
- исследование доступно пациентам.

Рекомендуемые скрининговые методы постоянно совершенствуются на основании проводимых научных исследований (табл. 157–4).

ТаBл. 157–4. Скрининговые исследования у лиц промежуточного риска без признаков заболевания в соответствии с рекомендациями Американского онкологического общества*

<table>
<thead>
<tr>
<th>РАК</th>
<th>ПРОЦЕДУРА</th>
<th>КРАТНОСТЬ ОБСЛЕДОВАНИЯ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рак молочной железы</td>
<td>Самостоятельный осмотр молочных желез</td>
<td>Ежемесячно или периодически после 20 лет</td>
</tr>
<tr>
<td>Осмотр молочной железы врачом</td>
<td>Каждые 3 года в возрасте 20–39 лет, далее — ежегодно</td>
<td></td>
</tr>
<tr>
<td>Маммография</td>
<td>Ежегодно после 40 лет</td>
<td></td>
</tr>
<tr>
<td>МРТ</td>
<td>Ежегодно (в добавление к маммографии) после 40 лет у женщин высокого риска или при наличии уплотнений в молочных железах, выявленных при осмотре или по данным маммографии</td>
<td></td>
</tr>
</tbody>
</table>
| Рак шейки матки | Тест Папаниколау (Пап-тест), иногда совместно с исследованием вируса папилломы человека | Ежегодно (или 1 раз в 2 года при применении новых жидкостных тестов) у всех женщин в течение 3 лет после первого вагинального контакта, но после 21 года†
| | После 30 лет – каждые 3 года, если ≥ 3 последовательных нормальных результатов обследования и риск не повышен | |
| Рак шейки матки, тела матки и яичников | Обследование органов малого таза | Каждые 1–3 года в возрасте 18–40 лет, далее — ежегодно |
| Рак предстательной железы | Исследование простатического специфического антигена | Ежегодно после 50 лет (или после 45 лет в группе высокого риска)‡ |
| Копоректальный рак | Анализ крови на скрытую кровь или | Ежегодно после 50 лет |
| | Гибкая сгибмидоскопия | Каждые 5 лет после 50 лет |
| | Колоноскопия | Каждые 10 лет после 50 лет |

*Обследование по поводу рака щитовидной железы, полости рта, кожи, лимфатических узлов и яичников должно выполняться при рутинных профилактических осмотрах.
†Большинству женщин старше 70 лет Пап-тест может выполняться реже.
‡Частота скрининга рака предстательной железы определяется пациентом и лечащим врачом.

Таблица 157–4. Скрининговые исследования у лиц промежуточного риска без признаков заболевания в соответствии с рекомендациями Американского онкологического общества*
КЛИНИЧЕСКИЕ ОСЛОЖНЕНИЯ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ

Онкологические заболевания могут вызывать боль, потерю веса, нейропатию, тошноту, слабость, судороги или обструкцию полых органов. Смерть обычно возникает в результате развития недостаточности одного или более органов и систем.

Болевой синдром у пациентов с метастатическим раком часто бывает связан с метастазами в костях, вовлечением нерва или нервного сплетения, давлением, оказываемым опухолью или выпотом. Агрессивная терапия боли необходима для лечения рака и поддержания качества жизни.

Тампонада сердца развивается из-за злокачественного перикардиального выпота и часто случается внезапно. Самые частые причины этого — рак молочной железы, рак легкого и лимфома. Выпот может вызвать боль в груди и болезненное чувство давления, которое повышается в положении лежа и уменьшается в положении сидя. У пациентов с тампонадой могут выявляться симптомы снижения сердечного выброса (например, головокружение или обморок). При физическом обследовании сердечные проявления могут быть не так выражены, может выявляться шум трения перикарда и парадоксальный пульс. Рентгенологическое исследование может выявить шаровидную форму сердца. Необходимо проведение перикардоцентеза с диагностической и терапевтической целью, также возможно проведение операций по созданию плевроперикардиальной фистулы и перикардэктомии.

Плевральный выпот должен быть дренирован, если имеет клинические проявления, и необходим мониторинг возобновления образования выпота. При быстром возобновлении возможно наложение торакостомы для дренажа, склерозирования или повторное дренирование с помощью катетера. Возможно проведение паллиативной хирургической плеврэктомии при рефрактерном выпоте у пациентов с распространенным онкологическим заболеванием.

Компрессия спинного мозга может случиться из-за распространения опухоли в позвоночник и требует экстренного хирургического вмешательства или лучевой терапии. Симптомами могут быть боль в спине, парезы нижних конечностей, дизфунсия кишечника и мочевого пузыря. Диагноз подтверждается с помощью КТ или МРТ.

Венозные тромбоэсы нижних конечностей часто приводят к осложнениям у онкологических пациентов. Опухоли продуцируют про-коагулянты, в т.ч. тканевые факторы, что ведет к повышению тромбообразования, особенно после операции. Для предотвращения легочной эмболии могут применяться антикоагулянты.

Метаболические и иммунные осложнения рака включают гиперкальцемию, гиперурикемию, повышенную продукцию АКТГ, антител, вызывающих неврологические нарушения, гемолитическую анемию и другое.

МЕТАСТАЗ БЕЗ ВЫЯВЛЕННОГО ПЕРВИЧНОГО ОЧАГА

Диагноз метастаза без выявленного первичного очага устанавливается, когда опухоль обнаруживается в одном или более местах метастатического поражения и обычными способами не удается обнаружить первичную опухоль. Метастазы без выявленного первичного очага составляют до 7% всех онкологических заболеваний рака и представляют собой терапевтическую дилемму, потому что лечение рака обычно направлено на конкретное первичное поражение.

Наиболее частой локализацией первичной опухоли являются яички, легкие, толстая и прямая кишка и поджелудочная железа. Эти области требуют тщательного обследования.

Исследования для выявления первичной опухоли включают:
• лабораторные анализы;
• визуализирующие методы обследования;
• иммуноцитохимическое и иммунопероксидазное исследования;
• анализ ткани.

Лабораторные тесты должны включать в себя клинический анализ крови, анализ мочи, анализ стула на скрытую кровь и биохимический анализ (включая исследование ПСА у мужчин).
Визуализирующие исследования должны включать в себя рентгенографию грудной клетки, КТ брюшной полости и маммографию. При обнаружении крови в стуле необходимо рентгенологическое исследование верхних отделов желудочно-кишечного тракта с контрастированием барием.

Увеличивающееся количество иммуноцитохимических маркеров может быть использовано для анализа доступной раковой ткани для определения локализации первичного поражения. В дополнение к этому иммунопероксидазное маркирование на иммуноглобулин, исследования генных перестроек и электронная микроскопия помогают выявить крупноклеточную лимфому, а иммунопероксидазное окрашивание на α-фетопротеин или β-хорионический гонадотропин может указывать на герминогенные опухоли. Анализ ткани на наличие рецепторов эстрогена и прогестерона помогает выявить рак молочной железы, а иммунопероксидазное окрашивание на ПСА помогает диагностировать рак простаты.

Даже если точный гистологический диагноз не может быть установлен, результаты исследований могут помочь предположить происхождение опухоли. Низкодифференцированные карциномы в средостении или в забрюшинном пространстве у молодых мужчин или у мужчин среднего возраста следует рассматривать как герминогенные опухоли даже при отсутствии поражения яичек. Больные этим вариантом опухоли должны получать пластиносодержащую терапию, потому что у почти 50% этих пациентов удается достичь продолжительной выживаемости без признаков заболевания. При большинстве других вариантов метастазов без выявленного первичного очага эффективность известных вариантов полихимиотерапии лечения ниже (медиана выживаемости <1 года).

ПАРАНЕОПЛАСТИЧЕСКИЕ СИНДРОМЫ

Паранеопластические синдромы – это симптомы, проявляющиеся в местах, отдаленных от опухоли или ее метастаза.

Хотя патогенез паранеопластических симптомов остается неясным, они могут вызываться веществами, продуцируемыми опухолью, или развиваться в результате перекрестной реакции противопухолевых антител с другими тканями. Симптомы могут проявляться в любом органе или системе. До 20% онкологических пациентов имеют паранеопластические синдромы, но часто они не распознаются.

Чаще всего паранеопластические симптомы развиваются при следующих онкологических заболеваниях:

- рак легкого (чаще всего);
- рак почки;
- гепатоцеллюлярная карцинома;
- лейкозы;
- лимфомы;
- опухоли молочных желез;
- опухоли яичников;
- опухоли нервной системы;
- рак желудка;
- рак поджелудочной железы.

Успешное лечение достигается лучше всего с помощью контроля основного заболевания, но некоторые симптомы могут быть купированы специфичными лекарствами (например, ципрогептадин при карциноидном синдроме, бисфосфонаты и кортикостероиды при гиперкальциемии).

Общие паранеопластические симптомы.

У больных онкологическими заболеваниями часто отмечаются жар, ночной пот, анорексия и хематоскидия. Это может обусловливаться выбросом цитокинов, вовлеченных в воспалительную или иммунную реакцию, или медиаторами, вовлеченными в опухолевую клеточную смерть, как например, фактор некроза опухоли-α. В развитии этих симптомов также могут участвовать нарушения функции печени и стероидогенеза.

Кожные паранеопластические синдромы.

У пациентов могут развиваться различные кожные симптомы.

- Зуд – самый частый кожный симптом у онкологических больных (например, у больных лейкозами, лимфомами). Чаще всего его причиной является гиперэозинофилия.
- Прилив – иногда развиваются в связи с производимыми опухолью циркулирующими
вазоактивными веществами (например, простагландинами).

Пигментные поражения кожи, или кератозы, встречающиеся при злокачественных опухолях, включают черный акантоз (рак желудочно-кишечного тракта), генерализованный кожный меланоз (лимфома, меланома, гепатоцеллюлярная карцинома), боловз Боуэна (рак легкого, рак желудочно-кишечного тракта, опухоли мочеполовых путей) и большие множественные себорейные кератозы, т.е. признаки Лезера–Трела (лимфома, рак желудочно-кишечного тракта). К развитию кератозов может приводить секреция опухолью предшественников меланина.

Ихтиоз, или десквамация разгибательной поверхности конечностей, также встречается у части больных.

Гипертрихоз может проявляться внезапным появлением грубых волос на лице и ушах, которое проходит после резекции или терапии опухоли. Также возможно развитие алоpecia при определенных видах рака. Механизм возникновения алоpecia остается неясным.

Некротическая мигрирующая эритема может развиваться при глюкагономах.

Подкожный адипозный некроз может возникать при высвобождении протеолитических ферментов из различных опухолей поджелудочной железы.

Опоясывающий лишай может проявляться при реактивации латентного вируса у пациентов со снижением общего иммунитета или нарушением функции иммунной системы.

Эндокринные паранеопластические синдромы. Эндокринная система часто затрагивается паранеопластическими синдромами. Синдром Кушинга (избыток кортизола, ведущий к гипергликемии, гипокалиемии, гипертензии, центральному ожирению, появлению лунообразного лица) может возникать при эктопической выработке АКТГ или схожих с ним молекул, часто при мелкоклеточном раке легких.

Аномалии водно-электролитного баланса, включая гипонатриемию, могут проявляться при выработке АДГ и гормонов, схожих с гормонами щитовидной железы, при мелкоклеточном или немелкоклеточном раке легкого.

Гипогликемия может возникать при продукции инсулиноподобных факторов роста или при продукции инсулина клетками островков поджелудочной железы или при гемангиоперитонеумах.

Гипертензия может возникать при аномальной секреции эпинефрина и норэпинефрина (при феохромоцитомах) или при избытке кортизола (АКТГ-продуцирующие опухоли).

Другие эктопически продуцируемые гормоны включают паратгормон-связанный белок (РТНР), при плоскоклеточном раке легкого, раке головы и шеи, раке мочевого пузыря, кальцитонин (при раке молочной железы, мелкоклеточном раке легкого и медуллярной карциноме щитовидной железы) и тиреотропный гормон (при гестационной хорионкарциноме). РТНР вызывает гиперкалциемию и связанные с ней симптомы (полиурия, дегидратация, запор, мышечная слабость); кальцитонин вызывает парадоксальное снижение уровня сывороточного кальция, что ведет к мышечным спазмам и аритмиям сердца.

Желудочно-кишечные паранеопластические синдромы. Выраженная диарея с последующей дегидратацией и нарушениями электролитного баланса может возникать при опухолевой секреции простагландинов или вазоактивного интестинального пептида. Подобные нарушения встречаются при опухолях островков поджелудочной железы и других. Энтеропатии с потерей белков могут возникать при воспалении опухолевой ткани, особенно при лимфомах.

Гематологические паранеопластические синдромы. У онкологических пациентов может развиться красноклеточная аплазия, анемия хронических заболеваний, лейкоцитоз (лейкемоидная реакция), тромбоцитоз, эозинофилия, базофилия и диссеминированное внутрисосудистое свертывание. В добавление к этому идиопатическая тромбоцитопения Пурпура и Кумбс-положительная гемолитическая анемия могут осложнить развитие опухолей лимфоидного происхождения. Эритроцитоз может развиваться при различных онкологических заболеваниях, особенно при раке почки и печени, из-за эктопической продукции эритропоэтина и эритропоэтина (?). В
отдельных случаях наблюдаются моноклональные гамматопии.

Известные механизмы гематологических нарушений включают продукцию опухолями веществ, которые имитируют или блокируют нормальные эндокринные сигналы для развития клеточных линий, и выработку антител, перекрестно реагирующих с рецепторами нормальных клеточных линий.

Неврологические паранеопластические синдромы. При паранеопластических синдромах встречается несколько вариантов периферической нейропатии. Они могут развиваться мозжечковые синдромы и другие центральные неврологические паранеопластические синдромы.

Периферическая нейропатия – самый распространенный неврологический паранеопластический синдром. Обычно это дистальная сенсомоторная полиневропатия, которая вызывает умеренную двигательную слабость, потерю чувствительности и отсутствие дистальных рефлексов. Синдром не отличим от того, что сопровождает многие хронические заболевания.

Подострая сенсорная нейропатия – более специфична, но редкая периферическая нейропатия. Развивается дегенерация ганглиев задних корешков и прогрессирующая потеря чувствительности с атаксией, однако нарушение проводимости моторных нейронов выражено слабо. Расстройство может приводить к инвалидности. Аутоантитело Anti-Hu выявляется в сыворотке у некоторых пациентов, больных раком легких. Лечение нет.

Синдром Гийена–Барре, другая периферическая нейропатия, встречается чаще у пациентов с лимфомой Ходжкина, чем в общей популяции.

Синдром Итона – Ламберта – это иммунопосредованный, похожий на миастению синдром, характеризующийся слабостью, обычно поражающей конечности и не затрагивающей глазные и глазничные мышцы. Синдром обусловлен пресинаптическим поражением, возникающим при нарушении освобождения ацетилхолина из нервных окончаний. Вовлечен IgG. Синдром может диагностироваться до или после выявления рака. Он наблюдается чаще у мужчин с интраракальными опухолями (70% имеют мелко- или овсяноклеточный рак легкого). Симптомы и признаки включают жажду, слабость, боль в проксимальных мышцах конечностей, периферические парестезии, сухость во рту, артериальную дисфункцию и птоз. Глубокие сухожильные рефлексы снижены или потеряны. Диагноз подтверждается при выявлении возрастания ответа на повторяющуюся нервную стимуляцию. Амплитуда составного мышечного потенциала увеличивается более чем на 200% при частоте >10 Гц. Терапия в первую очередь направлена на эпилептическое новообразование и иногда приводит к ремиссии. Гуанидин (начала 125 мг 4 раза в день внутрь, постепенно увеличивающая до 35 мг/кг) облегчает выброс ацетилхолина и часто снижает выраженность симптомов, но может усугубить функцию костного мозга и печени. Иногда бывает эффективно применение кортикостероидов и плазмафереза.

Подострая мозжечковая дегенерация вызывает прогрессирующую билатеральную атаксию рук и ног, дизартрию, иногда головокружение и диплопию. Неврологические симптомы могут включать деменцию с признаками поражения ствола мозга или без них, офтальмоплегию, нистагм, признаки поражения подошвенных разгибателей, выраженную дизартрию с включением в процесс рук. Мозжечковая дегенерация обычно прогрессирует в течение недели или месяцев, часто вызывая глубокую инвалидность. Мозжечковая дегенерация может предшествовать выявлению опухоли на несколько недель, месяцев или даже лет. Циркулирующее аутоантитело Anti-Yo обнаруживается в сыворотке или спинномозговой жидкости у некоторых пациентов, особенно у женщин, больных раком молочной железы или раком яичников. МРТ или КТ могут выявить мозжечковую атрофию, особенно на поздних стадиях. Характерные патологические изменения включают обширную потерю клеток Пуркинье и образование скоплений лейкоцитов вокруг глубоких кровеносных сосудов. В спинномозговой жидкости иногда обнаруживается умеренный лимфоцитарный плеоцитоз. Терапия неспецифична, но может наступить улучшение состояния при успешной терапии рака.

Опосконлюс (спонтанное хаотичное движение глаз) – редкий мозжечковый синдром, который может сопровождать нейробластому у детей. Он
связан с мозжечковой атаксией и миоклонусом тела и конечностей. Может выявляться циркулирующее антитело Anti-Ri. Синдром часто бывает вызван кортикостероидами и терапией рака.

Подострая моторная нейропатия – редкое расстройство, вызывающее безболезненную слабость нижнего мотонейрона верхних и нижних конечностей. Обычно отмечается у пациентов с лимфой Ходжкина и другими лимфомами. Клетки переднего рога денервируют. Часто случается спонтанное улучшение состояния.

Подострая некротизирующая миелопатия – редкое расстройство, вызывающее безболезненную слабость нижнего мотонейрона верхних и нижних конечностей. Обычно отмечается у пациентов с лимфомой Ходжкина и другими лимфомами. Клетки переднего рога денервируют. Часто случается спонтанное улучшение состояния.

Подострая некротизирующая миелопатия – редкий синдром, при котором в сером и белом веществах головного мозга быстро развиваются потеря чувствительности и двигательные расстройства, что ведет к параличам. МРТ помогает отличить эпидуральную компрессию от метастатической опухоли – более частой причины быстро прогрессирующей дисфункции спинного мозга у онкологических пациентов. МРТ может выявить некроз спинного мозга.

Энцефалит может возникать как паранеопластический синдром, причем несколько разных форм в зависимости от вовлеченной зоны мозга. Предполагается, что энцефалит объясняет энцефалопатию, которая часто возникает при мелкоклеточном раке легких. Лимфобластный энцефалит характеризуется тревогой и депрессией, приводящей к потере памяти и амнезии, а также к прогрессирующей дисфункции спинного мозга у онкологических пациентов. МРТ может выявить некроз спинного мозга.

Вторичный амилоидоз может возникать при миеломе, лимфомах или почечноклеточном раке.

Дерматомиозит и, в меньшей степени, полиимиозит считаются более распространенными у онкологических больных, особенно старше 50 лет. Обычно проксимальная мышечная слабость прогрессирует, вызывая патологическое воспаление и некроз. Темная эритематозная сыпь в виде бабочек может выра жаться при определенных видах рака толстой кишки и называется как болезненная отечность суставов (коленей, лодыжек, запястий, локтей и метакарпофаланговых суставов) с выпотом и иногда с пальцами в виде барабанных палочек.

Распознавание опухоли является комплексной и непростой задачей для иммунной системы, которая должна отличить клетки с адекватным ростом и организацией от клеток, подвергшихся неопластической трансформации. Процесс подразумевает распознавание опухолевых антигенов эффекторными клетками и инициацию иммунного ответа. Развитие опу-
ОПУХОЛЕВЫЕ АНТИГЕНЫ

Многие опухолевые клетки синтезируют антигены, которые могут высвобождаться в системный кровоток или экспонироваться на поверхности клетки. Были идентифицированы антигены для большинства онкологических заболеваний человека, в т.ч. для лимфомы Беркита, нейробластомы, злокачественной меланомы, остеосаркомы, рака почки, молочной железы, предстательной железы, легкого и толстой кишки. Ключевая роль иммунной системы заключается в обнаружении этих антигенов и последующей таргетной эрадикации. Однако, несмотря на их инородную структуру, иммунный ответ на опухолевые антигены варьирует и зачастую недостаточно выражен, чтобы препятствовать росту опухоли.

Опухоль-ассоциированные антигены (ТАА) лишь относительно специфичны для опухолевых клеток, тогда как опухоль-специфические антигены (TSA) уникальны для опухолевых клеток. TSA и TAA обычно представляют собой фрагменты внутриклеточных молекул, экспрессирующихся на поверхности клетки в составе главного комплекса гистосовместимости.

К предположительным механизмам формирования опухолевых антигенов относят:
• внедрение новой генетической информации с вирусными частицами (например, белки папилломавируса человека Е6 и Е7 при раке шейки матки);
• изменение онкогенеза или деятельности опухолевых супрессоров под действием канцерогенов, в результате чего появляются новые аминокислотные последовательности или на- капливаются белки, которые в норме не экспрессируются или экспрессируются в очень небольших количествах (например, ras, p53);
• аномально высокий уровень протеинов, которые в норме присутствуют в гораздо меньших количествах (например, простат-специфический антиген, меланомаассоциированные антигены) или экспрессируются только в период эмбрионального развития (раковый эмбриональный антиген);
• экспонирование антигенов, в норме скрытых в клеточной мембране, в связи с нарушением гомеостаза мембраны в опухолевых клетках;
• высвобождение антигенов, в норме заключенных внутри клетки или ее органелл, при гибели опухолевой клетки.

ОТВЕТ ОРГАНИЗМА НА РАЗВИТИЕ ОПУХОЛИ

Иммунный ответ на чужеродные антигены включает гуморальный (антитела) и клеточный компонент. В большинстве случаев гуморальный ответ не может воспрепятствовать росту опухоли. Однако эффекторные клетки, такие как Т-лимфоциты, макрофаги и естественные киллеры, обладают относительно высокой способностью уничтожать опухолевые клетки. Активность эффекторных клеток индуцируется клетками, презентирующими TSA или TAA на их поверхности (эти клетки называют антигенпрезентирующими клетками), и поддерживается цитокинами (например, интерлейкинами, интерферонами). Несмотря на активность эффекторных клеток, иммунный ответ организма может быть недостаточен для контроля возникновения и роста опухоли.

Клеточный иммунитет

Т-лимфоциты – основные клетки, ответственные за непосредственное распознавание и уничтожение опухолевых клеток. Они осуществляют иммунологический надзор, затем пролиферируют и разрушают впервые трансформированные опухолевые клетки после распознавания ТАА. Т-клеточный ответ на формирование опухоли регулируется другими клетками иммунной системы; некоторым клеткам необходимо присутствие гуморальных антител против опухолевых клеток (антителзависимая клеточная цитотоксичность) для инициации взаимодействий, приходящих к гибели опухолевых клеток. Напротив, супрессорные Т-лимфоциты подавляют иммунный ответ на развитие опухоли.
Цитотоксические T-лимфоциты (ЦТЛ) распознают антигены на клетках-мишенях и лизируют эти клетки. Эти антигены могут представлять собой белки клеточной мембраны или внутриклеточные белки (например, ТАА), которые экспрессируются на поверхности в комбинации с молекулами I класса главного комплекса гистосовместимости (МНС). Опухольспецифические ЦТЛ были обнаружены в нейробластомах, злокачественных меланомах, сарcomaх, раке толстой кишки, молочной железы, шейки матки, эндометрия, яичников, семенников, носоглотки и почки.

Естественные киллеры (NK) – это еще одна популяция эффекторных клеток, обладающих активностью против опухолевых клеток. В отличие от ЦТЛ NK не имеют рецепторов к антигенам, но все равно способны распознавать нормальные клетки, инфицированные вирусом, или опухольсевые клетки. Их активность против опухольсевых клеток названа естественной, поскольку не индуцируется никаким специфическим антигеном. Механизм, по которому NK-клетки различают нормальные и ненормальные клетки, в настоящее время исследуется. Существуют свидетельства того, что молекулы класса I главного комплекса гистосовместимости на поверхности нормальных клеток могут ингибировать активность NK-клеток и препятствовать лизису. Таким образом, сниженный уровень экспрессии молекул класса I, характерный для многих опухольсевых клеток, может способствовать активации NK-клеток и препятствованию лизису. Накопление этих клеток в опухоли ингибирует противопухольсевый иммунный ответ.

Макрофаги в активированном состоянии могут уничтожать опухольсевые клетки в комбинации с рядом факторов, включая лимфокины (растворимые факторы, синтезируемые T-лимфоцитами), и интерфероном. Они менее эффективны, чем цитотоксический механизм, опосредованный T-клетками. При определенных условиях макрофаги могут презентировать ТАА T-клеткам и стимулировать опухольспецифичный иммунный ответ.

Гуморальный иммунитет
В отличие от T-клеточного цитотоксического иммунного ответа гуморальные антитела не обеспечивают существенной защиты против опухольсевого роста. Большинство антител не может распознать ТАА. Несмотря на это, гуморальные антитела, взаимодействующие с опухольсевыми клетками in vitro, были обнаружены в сыворотке пациентов с различными опухолями, включая лимфому Беркитта, злокачественную меланому, бластную лейкемию, остеосаркому, рак легкого, молочной железы и ЖКТ. Действие цитотоксических антител направлено против поверхностных антигенов опухольсевых клеток. Эти антитела могут проявлять противопухольсевые эффекты посредством комплементарного связывания или действуя как метка для T-клеток, которые разрушают опухольсевые клетки (антителзависимая клеточ-
Глава 158. Иммунология опухолей

Ноопосредованная цитотоксичность). Другая популяция гуморальных антител, называемых усиливающими антителами (блокирующими антителами), может даже способствовать росту опухоли, скорее чем подавлять его. Механизмы развития и относительная значимость такого иммунологического усиления пока не установлены.

Несостоятельность защитных сил организма

Хотя многие опухолевые клетки элиминируются иммунной системой из организма (и поэтому никогда не обнаружаются), другие продолжают расти, несмотря на наличие TAA. Предложено несколько механизмов, объясняющих недостаточный ответ организма на TAA, в т.ч.:

■ специфическая иммунологическая толерантность к TAA в процессе взаимодействия антигенпрезентирующих клеток и супрессорных T-лимфоцитов, возможно вторичная по отношению к пренатальной экспозиции антигеном;
■ подавление иммунного ответа химически-ми, физическими или вирусными агентами (например, разрушение T-хелперов под действием ВИЧ);
■ подавление иммунного ответа цитотоксическими лекарственными препаратами или под действием радиации;
■ подавление иммунного ответа самой опухолью посредством различных сложных и в большинстве своем неохарактеризованных механизмов, которые влекут за собой различные нарушения, в т.ч. ослабление функции T-клеток, B-клеток и антигенпрезентирующих клеток, снижение продукции IL-2 и увеличение количества циркулирующих растворимых рецепторов IL-2 (которые связываются и таким образом инактивируют IL-2).

ИММУНОДИАГНОСТИКА ОПУХОЛЕЙ

Опухольассоциированные антигены (TAA) могут помочь диагностировать различные опухоли и иногда определить ответ на терапию или рецисив. Идеальный опухолевый маркер можно выделить только из опухолевой ткани, он будет специфичен только для этого типа опухоли, его можно определить при небольшой общей опухолевой массе, он будет иметь непосредственную взаимосвязь с опухолевой массой и будет обнаруживаться у всех пациентов с данной опухолью. Однако, хотя большинство опухолей выделяет в системный кровоток макромолекулы антигенов, которые можно обнаружить, ни один из опухолевых маркеров не обладает всеми требуемыми характеристиками, которые позволили бы проводить специфичные или чувствительные тесты при ранней диагностике или массовых программах скрининга на предмонстрокологической заболеваемости.

Раковый эмбриональный антиген (РЭА) представляет собой белковополисахаридный комплекс, который обнаруживается при раке толстой кишки и в норме в кишечнике, поджелудочной железе и печени плода. Содержание в крови повышено у больных раком толстой кишки, однако специфичность относительно низкая, поскольку положительный результат также получают у заядлых курильщиков и у пациентов с циррозом, хроническим холециститом и другими формами рака (например, рак молочной железы, поджелудочной железы, мочевого пузыря, яичников и шейки матки). Мониторинг уровня РЭА может быть полезен при оценке степени рецидива после иссечения опухоли, если изначально у пациента уровень РЭА был повышен, а также для уточнения прогноза в зависимости от стадии.

α-фетопротеин в норме образуется в гепатоцитах плода, также присутствует в сыворотке пациентов с первичной гепатомой, несеминомными герминогенными опухолями и, зачастую, эмбриональными карциномами яичников или семенников. Определение уровня часто полезно для оценки прогноза и, реже, для диагностики.

β-фетопротеин в норме образуется в гепатоцитах плода, также присутствует в сыворотке пациентов с первичной гепатомой, несеминомными герминогенными опухолями и, зачастую, эмбриональными карциномами яичников или семенников. Определение уровня часто полезно для оценки прогноза и, реже, для диагностики.
Мужчин с эмбриональной карциномой семенников или хорионкарциномой. Измеряется субъединица β, поскольку она является специфичной для ХГЧ. Этот маркер присутствует в небольших количествах у здоровых людей. Его уровень повышается в период беременности.

Простатспецифический антиген (ПСА), гликопротеин, обнаруживаемый в проницаемых эпителиальных клетках предстательной железы, определяется в низких концентрациях в сыворотке здоровых мужчин. С применением адекватного верхнего предела нормы анализ с использованием моноклональных антител выявляет повышенный уровень ПСА в сыворотке примерно у 90% пациентов с распространенным раком предстательной железы даже в отсутствие определяемой метастатической болезни. Этот анализ более чувствителен, чем анализ с простатической кислотой fosfatазой. Однако, поскольку уровень ПСА повышается и при других состояниях (например, доброкачественной гиперплазии предстательной железы, простатит, недавнее инструментальное вмешательство на мочеполовой системе), он менее специфичен. ПСА можно использовать для мониторинга рецидивов после диагностики и лечения рака предстательной железы.

CA 125 полезен в клинической практике для скрининга, диагностики и мониторинга терапии рака яичников, хотя при любом перитонеальном воспалительном процессе и некоторых других видах рака уровень его может повышаться. β_2-микроглобулин часто повышается при множественной миеломе и при некоторых лимфомах. В основном используется при оценке прогноза.

CA 19-9 изначально был разработан для выявления рака толстой кишки, но оказался более чувствительным для определения рака поджелудочной железы. В основном используется при принятии решения относительно выбора терапии у пациентов с распространенным раком поджелудочной железы. CA 19-9 также может повышаться при других опухолях ЖКТ, особенно при раке желчных протоков, а также при некоторых доброкачественных новообразованиях желчных протоков и холестатических нарушениях.

СА 15-3 и СА 27-29 повышаются у большинства пациентов с метастатическим раком молочной железы. Их уровень также может повышаться и при других состояниях. Эти маркеры в основном используют для мониторинга ответа на терапию.

Хромогранин А используется как маркер карциноида и других нейроэндокринных опухолей. Чувствительность и специфичность для нейроэндокринных опухолей может превышать 75%, и диагностическая точность выше для диффузных, чем для локализованных опухолей. Уровень этих маркеров может повышаться при других видах рака, таких как рак легких и предстательной железы, а также при некоторых доброкачественных нарушениях (например, при первичной гипертензии, хронических заболеваниях почек, хроническом атрофическом гастрите).

Тироглобулин образуется в щитовидной железе, его уровень может повышаться при различных нарушениях ее функции. В основном используется после тиреоидэктомии для выявления рецидива рака щитовидной железы и для мониторинга ответа на терапию метастатического рака щитовидной железы.

TA-90 является высокоиммуногенной субъединицей мочевого опухольассоциированного антигена, который присутствует у 70% больных меланомой, мягкотканными саркомами и раком молочной железы, толстой кишки и легкого. В некоторых исследованиях показано, что уровень TA-90 можно использовать для достаточно точного прогноза выживаемости и выявления субклинической болезни после хирургического удаления меланомы.

ИММУНОТЕРАПИЯ РАКА

Ряд иммунологических методов воздействия, как пассивных, так и активных, может быть использован для борьбы с опухолевыми клетками.

Пассивная иммунотерапия

При пассивной иммунотерапии специфические эффекторные клетки непосредственно вводят больному без дополнительной стимуляции их выработки в организме пациента.
Лимфокинактивированные киллеры (LAK) являются эндогенными Т-клетками, выделенными из крови больного и культивированными в системе клеточной культуры добавлением IL-2. Пролиферированные LAK-клетки затем возвращают в кровоток пациента. Исследования на животных показали, что LAK-клетки являются более эффективными против опухолевых клеток, чем оригинальные эндогенные Т-клетки, вероятно, вследствие их большего количества. Клинические исследования по изучению LAK-клеток у человека продолжаются.

Опухольинфильтрирующие лимфоциты (TIL) обладают еще большей противораковой активностью, чем LAK-клетки. Эти клетки выращивают в культуре подобно LAK-клеткам. Однако предшественников Т-клеток выделяют из реэкспонированной опухолевой ткани. Этот процесс теоретически обеспечивает получение Т-клеточной линии, обладающей большой специфичностью, чем клетки, полученные из кровяного русла. В последних клинических исследованиях получены весьма обнадеживающие результаты.

Одновременное применение интерферона увеличивает экспрессию антигенов главного комплекса гистосовместимости (МНС) и ТАА на опухолевых клетках, тем самым повышая степень уничтожения опухолевых клеток введенными эффекторными клетками.

Однако достигнуть ремиссии с помощью немодифицированных ЦТЛ удается редко. Ноым подходом, который, возможно, обеспечит значительный клинический эффект, является использование генетически модифицированных Т-клеток, экспрессирующих рецепторы, распознающие ТАА с высокой специфичностью к опухолевым клеткам.

Пассивная гуморальная иммунотерапия
Пассивная гуморальная иммунотерапия представляет собой введение экзогенных антител. Антилимфоцитарная сыворотка используется в лечении хронического лимфолейкоза и при Т- и В-клеточных лимфомах, приводя к временному снижению числа лимфоцитов и размеров лимфоузлов.

Моноклональные противопухолевые антитела могут быть присоединены к токсинам (например, рицин, дифтерийному) или радиоизотопам, и антитела доставляют эти токсины непосредственно к опухолевым клеткам. Другая методика состоит в применении биоспецифических антител или такой компоновкой антител, когда одно антитело реагирует с опухолевой клеткой, а второе — с цитотоксической эффекторной клеткой. Это приводит к близкому соприкосновению эффекторных клеток и опухолевых клеток, что повышает противоопухолевую активность. Данные методы лечения наиболее эффективны на ранних стадиях болезни, хотя потенциальная клиническая польза остаётся неясной.

Активная специфическая иммунотерапия
Индукация клеточного иммунного ответа (с вовлечением цитотоксических Т-клеток) в организме пациента, у которого отсутствует эффективный ответ, обычно предполагает усиление презентации опухолевых антигенов на поверхности эффекторных клеток. Клеточный иммунитет может развиться на специфические, хорошо известные антигены. Для стимуляции иммунного ответа организма можно использовать несколько методов; они могут включать введение пептидов, ДНК или опухолевых клеток (из организма пациента или другого пациента). Пептиды и ДНК часто вводят с помощью антигенпрезентирующих клеток (дendirтные клетки). Эти дendirтные клетки также можно генетически модифицировать для секреции дополнительных агентов, стимулирующих иммунный ответ (например, гранулоцитарно-макрофагальные колониестимулирующие факторы [ГМ-КСФ]).

Вакцины на основе пептидов содержат пептиды из определенных ТАА. Со временем определяется все больше и больше ТАА как мишени Т-клеток у пациентов с раком, препараты ТАА тестируют в клинических исследованиях. Последние данные указывают на то, что ответ на терапию наиболее мощный в случае, если ТАА презентируются дendirтными клетками. Эти клетки узнают из организма пациента, загружают их необходимым ТАА, а затем вводят в организм пациента внутрикожно; они стимулируют эндогенные Т-клетки и инициируют их ответ на ТАА. Пептиды также можно доставить...
при одновременном введении с иммуногенным адъювантом.

ДНК-вакцины содержат рекомбинантную ДНК, которая кодирует специфический (определеный) антиген. ДНК инкорпорируются в вирусные частицы и вводят непосредственно в организм пациента или, что более часто, вводят в дендритные клетки, полученные из организма пациента, которые затем вводят пациенту. ДНК экспрессирует необходимый антиген-мишень, который запускает или усиливает иммунный ответ у пациента.

Аутотонные опухолевые клетки (клетки, взятые из организма хозяина) реинфузируются пациенту после использования техники ex vivo (например, облучение, обработка нейраминидазой, конъюгацией с гаптеном, гибридизации с другими линиями клеток), что редуцирует злокачественный потенциал и повышает их антителенную активность. Генетическая модуляция опухолевых клеток с целью продукции иммуностимулирующих молекул (включая цитокины, такие как гранулоцитарно-макрофагальный колониестимулирующий фактор [ГМ-КСФ] или IL-2, костимуляторные молекулы, такие как В7-1 и аллогенный класс I МНС молекул) может также применяться для привлечения эффекторных молекул и усиления системного противоопухолевого ответа. Недавние клинические исследования с ГМ-КСФ, модифицированными опухолевыми клетками, продемонстрировали многообещающие предварительные результаты.

Аллогенные опухолевые клетки (клетки, выделенные от других больных) применяются у больных острым лимфобластным лейкозом и острым миелолейкозом. Ремиссия индуцируется интенсивной химиотерапией и лучевой терапией. Облученные аллогенные опухолевые клетки, которые были подвергнуты генетической или химической модификации с целью повышения их иммуногенного потенциала, вводятся больному. Альтернативно пациенту можно ввести вакцину бациллы Calmette-Guerin (БЦЖ) или другие адъюванты для повышения иммунного противоопухолевого ответа. Применение данной методики приводит к удлинению продолжительности ремиссии или повышению частоты достижения повторной ремиссии, о чем сообщалось в сериях клинических исследований, однако не во всех.

Новый подход к лечению рака путем сочетания имmunотерапии и традиционной химиотерапии продемонстрировал некоторые успехи (в сравнении с историческим контролем) в неинверсионных клинических исследованиях фазы I и II при различных видах рака, типах вакцин и химиотерапии.

Неспецифическая имmunотерапия

Интерфероны (ИФН-α, -β, -γ) являются гликопротеинами, обладающими противоопухолевой и противовирусной активностью. В зависимости от дозы интерфероны могут или повышать, или понижать клеточный и гуморальный иммунитет. Интерфероны также ингибитируют деление клеток и определенные процессы синтеза в различных клетках. Клинические исследования продемонстрировали, что интерфероны имеют противоопухолевую активность при различных неопластических процессах, включая волосатоклеточный лейкоз, хронический миелолейкоз, СПИД-ассоциированную саркому Капоши, неходжкинскую лимфому и рак яичников. Однако применение интерферонов ассоциировано со значительными побочными эффектами, такими как повышение температуры, недомогание, лейкопения, алопеция и миалгии.

Определенные бактериальные адъюванты (БЦЖ и производные, суспензия мертвых Corynebacterium parvum) обладают противоопухолевой активностью. Они применяются изолированно или в сочетании с опухолевыми антителами для лечения широкого спектра опухолей, обычно в комбинации с интенсивной химиотерапией или лучевой терапией. Например, прямая инфузия БЦЖ в опухолевую ткань приводит к регрессии меланомы и увеличению выживаемости без признаков заболевания при раке мочевого пузыря и может помочь в увеличении периода ремиссии при острым миелолейкозе, раке яичников и неходжкинских лимфомах.
Принципы лечения злокачественных опухолей

Для излечения от рака необходима элиминация всех опухолевых клеток. Основные методы лечения опухолей включают:
• хирургию и лучевую терапию (для местного или местно-распространенного заболевания);
• химиотерапию (для системного заболевания).
Другие важные методы включают:
• гормональную терапию (для отдельных вариантов рака, например рака предстательной железы, мочевой железы, эндометрия);
• иммунотерапию (моноклональные антитела, интерфероны и другие модификаторы биологического ответа, противоопухолевые вакцины);
• дифференцирующие агенты, такие как ретиноиды;
• таргетные агенты, разрабатываемые на основе увеличивающего объема информации о клеточной и молекулярной биологии.
В целом процесс лечения должен быть скоординирован такими специалистами, как онколог-радиолог, хирург и онколог-химиотерапевт. Методы лечения постоянно развиваются, постоянно проводится большое количество клинических исследований. Участие в клинических исследованиях должно быть рассмотрено и обсуждено с пациентами при каждой возможности.
Для описания ответа на лечение применяются разные термины (табл. 159–1). Индикатором излеченности обычно является безрецидивная выживаемость, продолжительность которой различается в зависимости от заболевания. Например, при раке легкого, мочевого пузыря, яичек, колоректального раке больные считаются излеченными после 5 лет без признаков заболевания. Однако рак молочной железы может рецидивировать и более чем через 5 лет, поэтому при этом заболевании более точным критерием излеченности может считаться 10-летняя безрецидивная выживаемость.
При принятии решения о выборе тактики лечения необходимо взвешивать потенциальную эффективность лечения и его возможную токсичность. Это требует открытого обсуждения и возможности участия мультидисциплинарной команды врачей. Предпочтения пациента в вопросе, как прожить остаток жизни, должны быть определены до начала лечения, несмотря на сложность обсуждения смерти в столь тяжелый для пациента момент.

Таблица 159–1. Определение ответа на лечение

<table>
<thead>
<tr>
<th>КРИТЕРИЙ</th>
<th>ОПРЕДЕЛЕНИЕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Излечение</td>
<td>Длительное отсутствие симптомов и признаков заболевания, хотя у больных, признанных излеченными, могут еще оставаться живые опухолевые клетки, которые в итоге могут вызывать рецидив</td>
</tr>
<tr>
<td>Полная ремиссия (полный ответ)</td>
<td>Исчезновение клинических проявлений заболевания</td>
</tr>
<tr>
<td>Частичный ответ</td>
<td>Сокращение объема опухолевых масс более чем на 50%, что иногда приводит к значительному увеличению продолжительности жизни или уменьшению симптомов заболевания, но неизбежно заканчивается возобновлением роста опухоли</td>
</tr>
<tr>
<td>Стабилизация заболевания</td>
<td>Отсутствие как положительной, так и отрицательной динамики</td>
</tr>
<tr>
<td>Безрецидивная выживаемость (безрецидивный интервал)</td>
<td>Интервал между исчезнением опухоли и рецидивом</td>
</tr>
<tr>
<td>Продолжительность ответа</td>
<td>Время между появлением ответа на лечение и прогрессированием</td>
</tr>
<tr>
<td>Выживаемость</td>
<td>Время от постановки диагноза до смерти</td>
</tr>
</tbody>
</table>

ОЛЛ – острый лимфобластный лейкоз; ОНЛЛ – острый нелимфобластный лейкоз.
МЕТОДЫ ЛЕЧЕНИЯ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ

Методы лечения онкологических заболеваний включают в себя:
• хирургию;
• лучевую терапию;
• химиотерапию.

Нередко методы комбинируются для создания программы, которая подходит для данного пациента, основывается на характеристиках опухоли и пациента и согласуется с предпочтениями пациента.

Выживаемость при применении различных методов лечения, по отдельности и в комбинации, указана для различных онкологических заболеваний (табл. 159–2).

Хирургия

Хирургия является наиболее давним эффективным методом лечения онкологических заболеваний. Она может применяться отдельно или в комбинации с другими методами.

Факторы, увеличивающие риск операции у онкологических больных:
■ возраст;
■ сопутствующие заболевания;
■ раковая кахексия;
■ параксоматические синдромы (реже).

Раковые больные часто бывают истощены в связи с анорексией и влиянием растущей опухоли на катаболизм, и это может замедлять восстановление больных после операции. У больных могут быть нейтропения, тромбоцитопения или нарушения свертывания крови, которые повышают риск возникновения септических и геморрагических осложнений. Поэтому оценка состояния больного перед операцией является задачей первостепенной важности.

Первичная резекция опухоли. Если первичная опухоль не метастазировала, хирургическое лечение может приводить к излечению. Установление точной границы нормальной ткани вокруг опухоли является критически важным для успешной резекции опухоли. Иногда требуется интраоперационное морфологическое исследование замороженного операционного материала, с дополнительной резекцией тканей в случае нахождения в краях резекции опухолевых клеток. Однако исследование замо-

ТАБЛ. 159–2. ПОКАЗАТЕЛИ 5-ЛЕТНЕЙ БЕЗРЕЦИДИВНОЙ ВЫЖИВАЕМОСТИ ПРИ ЛЕЧЕНИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ

<table>
<thead>
<tr>
<th>ВАРИАНТ ЛЕЧЕНИЯ, ОБЛАСТЬ ПОРЖЕНИЯ</th>
<th>СТАДИЯ</th>
<th>5-ЛЕТНЯЯ БЕЗРЕЦИДИВНАЯ ВЫЖИВАЕМОСТЬ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хирургическое лечение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мочевой пузырь</td>
<td>0, A</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>В1</td>
<td>66</td>
</tr>
<tr>
<td>Шейка матки</td>
<td>I</td>
<td>94</td>
</tr>
<tr>
<td>Толстая кишка</td>
<td>I, II</td>
<td>81</td>
</tr>
<tr>
<td>Эндометрий</td>
<td>I</td>
<td>74</td>
</tr>
<tr>
<td>Почка</td>
<td>I, II</td>
<td>67</td>
</tr>
<tr>
<td>Гортань</td>
<td>I, II</td>
<td>76</td>
</tr>
<tr>
<td>Легкое (немелкоклеточный рак)</td>
<td>I</td>
<td>50–70</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>37</td>
</tr>
<tr>
<td>Полость рта</td>
<td>I, II</td>
<td>67–76</td>
</tr>
<tr>
<td>Яичники</td>
<td>I, II</td>
<td>72</td>
</tr>
<tr>
<td>Предстательная железа</td>
<td>I</td>
<td>80</td>
</tr>
<tr>
<td>Яички (несеминомные опухоли)</td>
<td>I</td>
<td>65</td>
</tr>
<tr>
<td>Лучевая терапия</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Шейка матки</td>
<td>II, III</td>
<td>60</td>
</tr>
<tr>
<td>ВARIANT ЛЕЧЕНИЯ, ОБЛАСТЬ ПОРАЖЕНИЯ</td>
<td>СТАДИЯ</td>
<td>5-ЛЕТНЯЯ БЕЗРЕЦИДИВНАЯ ВЫЖИВАЕМОСТЬ (%)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Пищевод</td>
<td>—</td>
<td>10</td>
</tr>
<tr>
<td>Лимфома Ходжкина</td>
<td>IA</td>
<td>80</td>
</tr>
<tr>
<td>Гортань</td>
<td>I, II</td>
<td>76</td>
</tr>
<tr>
<td>Легкое (немелкоклеточный рак)</td>
<td>III M0 (за исключением опухоли Панкоста)</td>
<td>9</td>
</tr>
<tr>
<td>Придаточные пазухи носа</td>
<td>I, II, III</td>
<td>35</td>
</tr>
<tr>
<td>Носоглотка</td>
<td>I, II, III</td>
<td>35</td>
</tr>
<tr>
<td>Некоджкинские лимфомы</td>
<td>I</td>
<td>60</td>
</tr>
<tr>
<td>Предстательная железа</td>
<td>I, II</td>
<td>80</td>
</tr>
<tr>
<td>Яички (семинома)</td>
<td>II, III</td>
<td>84</td>
</tr>
</tbody>
</table>

Химиотерапия (иногда в комбинации с лучевой терапией)

<table>
<thead>
<tr>
<th>ВARIANT ЛЕЧЕНИЯ, ОБЛАСТЬ ПОРАЖЕНИЯ</th>
<th>СТАДИЯ</th>
<th>5-ЛЕТНЯЯ БЕЗРЕЦИДИВНАЯ ВЫЖИВАЕМОСТЬ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лимфома Беркита</td>
<td>I, II, III</td>
<td>60</td>
</tr>
<tr>
<td>Хорионкарцинома (у женщин)</td>
<td>Все стадии</td>
<td>95</td>
</tr>
<tr>
<td>Лимфома Ходжкина</td>
<td>IIIВ, IVA, В</td>
<td>74</td>
</tr>
<tr>
<td>Лейкоз (ОЛЛ у детей)</td>
<td>I, II, III</td>
<td>85</td>
</tr>
<tr>
<td>Лейкоз (ОНЛЛ у детей)</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>Лейкоз (ОНЛЛ, ≤40 лет)</td>
<td>—</td>
<td>40–50</td>
</tr>
<tr>
<td>Лейкоз (ОНЛЛ, 45–65 лет)</td>
<td>—</td>
<td>25</td>
</tr>
<tr>
<td>Лейкоз (ОНЛЛ, >65 лет)</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>Легкое (мелкоклеточный рак)</td>
<td>Ограниченные</td>
<td>25</td>
</tr>
<tr>
<td>Лимфома (диффузная крупноклеточная)</td>
<td>II, III, IV</td>
<td>60</td>
</tr>
<tr>
<td>Яички (несеминомные опухоли)</td>
<td>III</td>
<td>88</td>
</tr>
</tbody>
</table>

Хирургия и лучевая терапия

<table>
<thead>
<tr>
<th>ВARIANT ЛЕЧЕНИЯ, ОБЛАСТЬ ПОРАЖЕНИЯ</th>
<th>СТАДИЯ</th>
<th>5-ЛЕТНЯЯ БЕЗРЕЦИДИВНАЯ ВЫЖИВАЕМОСТЬ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мочевой пузырь</td>
<td>B2, C</td>
<td>54</td>
</tr>
<tr>
<td>Эндометрий</td>
<td>II</td>
<td>62</td>
</tr>
<tr>
<td>Гортань</td>
<td>II, III</td>
<td>33</td>
</tr>
<tr>
<td>Легкое (опухоль Панкоста)</td>
<td>III M0</td>
<td>32</td>
</tr>
<tr>
<td>Полоса рта</td>
<td>III</td>
<td>36</td>
</tr>
<tr>
<td>Яички (симнома)</td>
<td>I</td>
<td>94</td>
</tr>
</tbody>
</table>

Хирургия и химиотерапия

<table>
<thead>
<tr>
<th>ВARIANT ЛЕЧЕНИЯ, ОБЛАСТЬ ПОРАЖЕНИЯ</th>
<th>СТАДИЯ</th>
<th>5-ЛЕТНЯЯ БЕЗРЕЦИДИВНАЯ ВЫЖИВАЕМОСТЬ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Толстая кишка</td>
<td>III</td>
<td>70</td>
</tr>
<tr>
<td>Яичники (карцинома)</td>
<td>III, IV</td>
<td>15</td>
</tr>
</tbody>
</table>

Лучевая терапия и химиотерапия

<table>
<thead>
<tr>
<th>ВARIANT ЛЕЧЕНИЯ, ОБЛАСТЬ ПОРАЖЕНИЯ</th>
<th>СТАДИЯ</th>
<th>5-ЛЕТНЯЯ БЕЗРЕЦИДИВНАЯ ВЫЖИВАЕМОСТЬ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Анальный канал (плоскоклеточный рак)</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>ЦНС (медуллобластома)</td>
<td>—</td>
<td>70–80</td>
</tr>
<tr>
<td>Саркома Юинга</td>
<td>Все стадии</td>
<td>70</td>
</tr>
<tr>
<td>Легкое (плоскоклеточный рак)</td>
<td>Ограниченные</td>
<td>25</td>
</tr>
</tbody>
</table>

Хирургия, лучевая терапия и химиотерапия

<table>
<thead>
<tr>
<th>ВARIANT ЛЕЧЕНИЯ, ОБЛАСТЬ ПОРАЖЕНИЯ</th>
<th>СТАДИЯ</th>
<th>5-ЛЕТНЯЯ БЕЗРЕЦИДИВНАЯ ВЫЖИВАЕМОСТЬ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Молочная железа (с лучевой терапией и/или гормональной терапией)</td>
<td>I, II</td>
<td>70–90</td>
</tr>
<tr>
<td>Эмбриональная рабдомиосаркома</td>
<td>Все стадии</td>
<td>80</td>
</tr>
<tr>
<td>Почки (опухоль Вильсма)</td>
<td>Все стадии</td>
<td>80</td>
</tr>
<tr>
<td>Полоса рта, гортань</td>
<td>III, IV</td>
<td>20–40</td>
</tr>
<tr>
<td>Прямая кишка</td>
<td>II, III</td>
<td>50–70</td>
</tr>
</tbody>
</table>
рожденного образца менее достоверно, чем обработанного и окрашенного материала, поэтому необходимость более широкой резекции может быть установлена при последующем пересмотре границ резекции.

Хирургическая резекция первичной опухоли с локальным распространением может также потребовать удаления вовлеченных регионарных лимфоузлов, резекции пораженных прилежащих органов или блоковую резекцию. В таблице перечислены выживаемость при применении хирургического лечения при различных онкологических заболеваниях (табл. 159–2).

Когда первичная опухоль экстенсивно распространяется на прилежащие ткани, хирургическое лечение может быть отложено, с тем чтобы посредством других вариантов лечения (например, химиотерапии, лучевой терапии) уменьшить объем необходимой резекции.

Резекция метастазов. При наличии метастазов в регионарные лимфоузлы оптимальным вариантом лечения могут быть нехирургические методы, например при местно-распространенном раке легкого или при раке головы и шеи. Одиночные метастазы, особенно в легком, иногда могут быть удалены хирургическим путем, что в части случаев приводит к излечению.

Хирургическая резекция первичной опухоли и метастазов может быть эффективна при ограниченном количестве метастазов, особенно в печени, головном мозге или легких. Например, при раке толстой кишки с метастазами в печень 5-летняя общая выживаемость больных с <4 очагами в печени и адекватной оценкой краев резекции при применении хирургического лечения составляет 30–40%.

Циторедукция. Циторедукция (хирургическая резекция с целью уменьшения опухолевой массы) часто может применяться, когда удаление всей опухоли невозможно, например в большинстве случаев рака яичников. Циторедукция может повысить чувствительность оставшейся опухоли к другим видам лечения посредством механизмов, которые до сих пор не ясны. Наиболее эффективны циторедуктивные операции при солидных опухолях в педиатрии и при раке яичников.

Паллиативная хирургия. Операции, направленные на облегчение симптомов заболевания и на сохранение качества жизни, могут выполняться в ситуациях, когда излечение маловероятно или когда токсичность излечивающей программы неприемлема для больного. Резекция опухоли может быть показана для снятия болевого синдрома, для уменьшения риска кровотечения или для устранения обструкции жизненно важных органов (например, кишечника, мочеточников). Питание через гастростому или еюнностому может быть необходимо при наличии проксимальной обструкции желудочно-кишечного тракта.

Реконструктивная хирургия. Реконструктивная хирургия улучшает качество жизни больного после резекции опухоли (например, реконструкция молочной железы после мастэктомии).

Лучевая терапия

Лучевая терапия может приводить к излечению от многих онкологических заболеваний (табл. 159–2), особенно при локализованных стадиях или при опухолях, которые могут полностью попадать в поле облучения. Лучевая терапия в комбинации с хирургией (при раке головы и шеи, гортани, тела матки) или с химиотерапией и хирургией (при раке молочной железы, пищевода, легкого или прямой кишки) увеличивает эффективность лечения и позволяет выполнять менее объемные операции в сравнении с традиционными хирургическими резекциями.

Лучевая терапия обеспечивает выраженный паллиативный эффект в случаях, когда излечение невозможно:
- при опухолях головного мозга: продлевает дееспособность больного;
- при опухолях с компрессией спинного мозга: предотвращает прогрессирование с развитием неврологического дефицита;
- при синдроме верхней полой вены: уменьшает венозную обструкцию;
- при болезненном повреждении костей: облегчает симптомы.

Лучевая терапия не может уничтожить злокачественные клетки без разрушения нормальных тканей. Поэтому необходимо соотносить возможный лечебный эффект с риском повреждения нормальных тканей. Эффективность облучения зависит от ряда факторов:
Глава 159. Принципы лечения злокачественных опухолей

характеристики облучения (вид, сроки, объем, доза);
характеристики опухоли (фаза клеточного цикла, оксигенация, молекулярные характеристики, общая чувствительность к облучению).

В целом злокачественные клетки подвергаются разрушению избирательно, т.к. имеют высокий уровень метаболизма. Нормальные ткани более эффективно восстанавливаются, что приводит к более интенсивному разрушению опухоли.

При применении лучевой терапии необходимо принимать во внимание:
■ сроки лечения (критично);
■ фракционирование дозы (критично);
■ нормальные ткани, попадающие или прилегающие к полю облучения;
■ целевой объем;
■ конфигурацию пучков излучения;
■ распределение дозы;
■ вид и энергию облучения, наиболее подходящие для данного пациента.

Дизайн лечения составляет таким образом, чтобы с учетом клеточной кинетики опухолевого роста добиться максимального повреждения опухоли при минимальном повреждении нормальных тканей.

Сеанс лучевой терапии начинается с точного расположения пациента. Формы из пенопласта или пластиковые маски часто применяются для достижения точного положения больного в серии сеансов лучевой терапии. Используются лазерные сенсоры. Стандартные курсы паллиативной терапии включают ежедневные крупные дозы облучения в течение 3 недель; с лечебной целью применяются меньшие дозы с частотой 1 раз в день 5 дней в неделю, в течение 6–8 недель.

Виды лучевой терапии. Применяется несколько различных видов лучевой терапии.

Наружная лучевая терапия может выполняться фотонами (гамма-излучение), электронами или протонами. Чаще всего применяется гамма-излучение, производимое линейными ускорителями. Облучение прилежащих нормальных тканей может быть снижено при применении «конформного» облучения, при котором редуцируется рассеяние облучения на краях поля. Лучевая терапия электронами проникает в ткани на небольшую глубину, что является оптимальным при поверхностно расположенным раке и раке кожи. В зависимости от необходимой глубины погружения и вида опухоли используют разную энергию электронов. Терапия протонами, хотя и менее доступна, обеспечивает точные границы облучения, что особенно важно при лечении опухолей глаз, основания черепа и спинного мозга.

Стереотаксическая лучевая терапия представляет собой радиохирургический метод с точной стереотаксической локализацией опухоли, что позволяет направить одну высокую дозу или много фракционированных доз облучения на небольшой объект в полости черепа или в другом месте. Преимуществами являются полная абляция опухоли в локализациях, где применение хирургических методов невозможно, и минимальное количество нежелательных явлений. Недостатками являются ограничение размеров опухоли, которая может быть облучена, и возможность повреждения окружающих тканей из-за высокой дозы облучения. Кроме того, этот метод не может применяться во всех областях тела. Необходима иммобилизация больного, область облучения должна быть абсолютно неподвижна.

Брахитерапия представляет собой помещение источника радиоактивного излучения непосредственно в опухоль (как правило, предстательная железа или шейка матки), чаще всего под контролем КТ или УЗИ. Этой методикой достигается высокая эффективность облучения на более длительный период, чем это возможно с помощью фракционированного наружного облучения.

Системные радиоактивные изотопы способны направить облучение на органы, имеющие специфические рецепторы для связывания изотопов (например, радиоактивный йод при раке щитовидной железы) или когда радионуклид связан с моноклональными антителами (например, тоситумомаб плюс йод-131 при неходжкинских лимфомах). Изотопы также применяются с паллиативной целью при генерализованном поражении костей (например, радиоактивный стронций при раке предстательной железы).
Различные агенты и методы, особенно химиотерапия, способны повысить чувствительность опухолевой ткани к облучению и повысить эффективность лучевой терапии.

Нежелательные явления. Лучевая терапия может повреждать любые ткани в зоне своего действия.

Острые нежелательные явления зависят от облученной зоны и могут включать:

- летаргию;
- слабость;
- мукозит;
- кожные проявления (эритема, зуд, десквамация);
- эзофагит;
- пневмонит;
- гепатит;
- гастроинтестинальные симптомы (тошнота, рвота, диарея, тенезмы);
- нарушения мочеиспускания;
- цитопении.

Раннее выявление и лечение этих нежелательных явлений важно не только для комфорта больного и качества его жизни, но и для обеспечения непрерывности лечения; увеличение перерывов в лечении может позволить опухоли возобновить рост.

Поздние осложнения включают катаракту, кератит и повреждение сетчатки глаза, если глаз был в зоне облучения; гипопитуитаризм; ксеростомию; гипотиреоз; гепатит; гастроэнтерологические симптомы (тошнота, рвота, диарея, тенезмы); нарушения мочеиспускания; цитопении. Раннее выявление и лечение этих нежелательных явлений важно не только для комфорта больного и качества его жизни, но и для обеспечения непрерывности лечения; увеличение перерывов в лечении может позволить опухоли возобновить рост.

Химиотерапия

Идеальное химиотерапевтическое средство должно быть направлено на уничтожение только злокачественных клеток. К сожалению, таких средств очень немного. Наиболее часто используемые химиотерапевтические препараты и их побочные действия перечислены ниже (табл. 159–3).

Цитотоксические средства. Традиционная цитотоксическая химиотерапия, которая повреждает ДНК клеток, поражает не только опухолевые, но и нормальные клетки. Антиметаболиты, такие как 5-фторурацил и метотрексат, действуют в зависимости от клеточного цикла и имеют нелинейное соотношение доза – ответ. Другие химиотерапевтические препараты (например, агенты, образующие поперечные связи ДНК, также известные как алкилирую-
<table>
<thead>
<tr>
<th>ПРЕПАРАТ</th>
<th>МЕХАНИЗМ ДЕЙСТВИЯ</th>
<th>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</th>
<th>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антиметаболиты: антагонисты фолиевой кислоты</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Метотрексат</td>
<td>Связывается с дигидрофолатредуктазой и нарушает синтез тимидина</td>
<td>Острый лимфобластный лейкоз, хрящевой рак, рак головы и шеи, рак щитовидной железы, рак яичников</td>
<td>Изъязвления слизистых, миелосупрессия. Токсичность усиливается при нарушении функции почек и при наличии асцита (накопление препарата) Лейковорин нейтрализует токсичность через 24 часа (10–20 мг каждые 6 часов, 10 доз)</td>
</tr>
<tr>
<td>Пеметрексед</td>
<td>Ингибитирует синтез тимидина</td>
<td>Рак легкого, меланома, рак яичников</td>
<td>Миелосупрессия, изъязвления слизистых</td>
</tr>
<tr>
<td>Антиметаболиты: антагонисты пурина</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кладрибин</td>
<td>Ингибитирует рибонуклеотидредуктазу</td>
<td>Лейкоз, лимфома</td>
<td>Миелосупрессия, иммуносупрессия</td>
</tr>
<tr>
<td>Клофарбин</td>
<td>Ингибитирует синтез ДНК</td>
<td>Острый лимфобластный лейкоз, рефрактерный как минимум к 2 предшествующим линиям лечения</td>
<td>Миелосупрессия, иммуносупрессия, тошнота, диарея</td>
</tr>
<tr>
<td>Флударабин</td>
<td>Блокирует синтез ДНК, ингибитирует рибонуклеотидредуктазу</td>
<td>Лейкоз, лимфома</td>
<td>Миелосупрессия, иммуносупрессия, аутоиммунные реакции</td>
</tr>
<tr>
<td>6-меркапто-пурин</td>
<td>Блокирует синтез пурина de novo</td>
<td>Острый лейкоз</td>
<td>Миелосупрессия, иммуносупрессия</td>
</tr>
<tr>
<td>Неларабин</td>
<td>Ингибитирует синтез ДНК</td>
<td>Лейкоз, лимфома</td>
<td>Миелосупрессия, иммуносупрессия</td>
</tr>
<tr>
<td>Пентостатин</td>
<td>Ингибитирует синтез ДНК</td>
<td>Лейкоз</td>
<td>Миелосупрессия, иммуносупрессия, тошнота, рвота</td>
</tr>
<tr>
<td>Антиметаболиты: антагонисты пиримидина</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Капецитабин</td>
<td>Ингибитирует тимидилатсинтетазу</td>
<td>Рак молочной железы, опухоли ЖКТ</td>
<td>Мукозит, алопеция, миелосупрессия, диарея, рвота, ладонно-подошвенный синдром, язва</td>
</tr>
<tr>
<td>Цитарабин</td>
<td>Включается в структуру ДНК и разрывает цепь</td>
<td>Острые лейкозы (особенно нелейфобластные), лимфома</td>
<td>Миелосупрессия, тошнота, рвота, нарушение функции мозжечка (при высоких дозах), конъюнктивит (при высоких дозах), сыпь</td>
</tr>
<tr>
<td>5-фторурацил</td>
<td>Ингибитирует тимидилатсинтетазу</td>
<td>Рак молочной железы, опухоли ЖКТ</td>
<td>Мукозит, алопеция, миелосупрессия, диарея, рвота</td>
</tr>
<tr>
<td>Гемцитабин</td>
<td>Включается в структуру ДНК и разрывает цепь, ингибитирует рибонуклеотидредуктазу</td>
<td>Рак мочевого пузыря, рак легкого, рак поджелудочной железы</td>
<td>Миелосупрессия, гемолитико-уремический синдром</td>
</tr>
<tr>
<td>Гидроксимо-чевина</td>
<td>Ингибитирует рибонуклеотидредуктазу</td>
<td>Хронический миелоидный лейкоз</td>
<td>Миелосупрессия</td>
</tr>
<tr>
<td>ПРЕПАРАТ</td>
<td>МЕХАНИЗМ ДЕЙСТВИЯ</td>
<td>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</td>
<td>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Иммунореагенты</td>
<td>Воспроизводит лиганды, связанные с рецептором андрогена</td>
<td>Рак предстательной железы, рак молочной железы, рак яичника</td>
<td>Снижение либидо, горячие приливы, гинекомастия</td>
</tr>
<tr>
<td>Энзимы</td>
<td>Истощает аспарагин, от которого зависят клетки лейкоз</td>
<td>Острый лимфобластный лейкоз</td>
<td>Острая анифилаксия</td>
</tr>
<tr>
<td>Гормоны</td>
<td>Связывается с рецептором андрогена</td>
<td>Рак предстательной железы</td>
<td>Снижение либидо, горячие приливы, гинекомастия</td>
</tr>
</tbody>
</table>

Модификаторы биологического ответа

<table>
<thead>
<tr>
<th>ПРЕПАРАТ</th>
<th>МЕХАНИЗМ ДЕЙСТВИЯ</th>
<th>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</th>
<th>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Интерферон α</td>
<td>Антипролиферативный эффект</td>
<td>Хронический миелолейкоз, Волосатоклеточный лейкоз, Сарcoma Kaposi, Лимфомы, Меланома, Почечноклеточный рак</td>
<td>Слабость, Лихорадка, Миалгии, Артралгия, Миелосупрессия, Нефротический синдром (редко)</td>
</tr>
</tbody>
</table>

Блеомицины

<table>
<thead>
<tr>
<th>ПРЕПАРАТ</th>
<th>МЕХАНИЗМ ДЕЙСТВИЯ</th>
<th>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</th>
<th>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Блеомицин</td>
<td>Вызывает разрыв цепи ДНК</td>
<td>Лимфомы, Плоскоклеточный рак, Рак яичка</td>
<td>Анафилаксия, Озноб, Лихорадка, Сыль, Пульmonaryный фиброз при дозе >200 мг/м², Требует почечной экскреции</td>
</tr>
</tbody>
</table>

Препараты, алкилирующие ДНК: производные нитрозомочевины

<table>
<thead>
<tr>
<th>ПРЕПАРАТ</th>
<th>МЕХАНИЗМ ДЕЙСТВИЯ</th>
<th>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</th>
<th>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Карбимусин</td>
<td>Алкилирует ДНК, нарушая развертывание и репликацию цепи</td>
<td>Опухоли головного мозга, Лимфомы</td>
<td>Миелосупрессия, Легочная токсичность (фиброз), Почечная токсичность</td>
</tr>
<tr>
<td>Ломустин</td>
<td>Алкилирует ДНК, нарушая развертывание и репликацию цепи</td>
<td>Опухоли головного мозга, астроцитома, Глиобластома</td>
<td>Миелосупрессия, Легочная токсичность (отсроченная), Почечная токсичность</td>
</tr>
</tbody>
</table>

Препараты, образующие поперечные связи с ДНК, и алкилирующие агенты

<table>
<thead>
<tr>
<th>ПРЕПАРАТ</th>
<th>МЕХАНИЗМ ДЕЙСТВИЯ</th>
<th>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</th>
<th>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бендаамустин, Циклофосфамид, Мелфалан</td>
<td>Присоединяясь к ДНК, вызывает разрыв цепи ДНК</td>
<td>Рак молочной железы, Хронический лимфолейкоз, Глиомы, Лимфома Ходжкина, Лимфомы, Множественная миелома, Мелкоклеточный рак легкого, Рак яичка</td>
<td>Апоплесия при высоких дозах, Тошнота, Рвота, Миелосупрессия, Геморрагический цистит (особенно при применении циклофосфамида и ифосфамида), который можно купировать месной, Мутагенное действие, Вторичные лейкозы, Астеризм, Перманентная стерильность (возможно)</td>
</tr>
<tr>
<td>Дакарбазин, Темозоломид</td>
<td>Формирует связи с ДНК</td>
<td>Меланома, Злокачественная глиома</td>
<td>Нейтропения, Тошнота, Рвота, Вторичные лейкозы</td>
</tr>
<tr>
<td>Прокарбазин</td>
<td>Не ясно</td>
<td>Лимфома Ходжкина</td>
<td>Нейтропения, Тошнота, Рвота, Вторичные лейкозы</td>
</tr>
</tbody>
</table>

Энзимы

<table>
<thead>
<tr>
<th>ПРЕПАРАТ</th>
<th>МЕХАНИЗМ ДЕЙСТВИЯ</th>
<th>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</th>
<th>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аспарагиназа</td>
<td>Истощает аспарагин, от которого зависят клетки лейкоз</td>
<td>Острый лимфобластный лейкоз</td>
<td>Острая анифилаксия</td>
</tr>
<tr>
<td>Гормоны</td>
<td>Связывается с рецептором андрогена</td>
<td>Рак предстательной железы</td>
<td>Снижение либидо, горячие приливы, гинекомастия</td>
</tr>
<tr>
<td>Препарат</td>
<td>Механизм действия</td>
<td>Наиболее чувствительные опухоли</td>
<td>Токсичность и комментарии</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Фульвестрант</td>
<td>Связывается с рецептором эстрогена</td>
<td>Метастатический рак молочной железы</td>
<td>Тошнота, рвота, запор, диарея, боли в животе, головная боль, боли в спине, горячие приливы, фарингит</td>
</tr>
<tr>
<td>Леипролид ацетат</td>
<td>Ингибитирует секрецию гонадотропина</td>
<td>Рак предстательной железы</td>
<td>Горячие приливы, снижение либидо, задержание в месте инъекции</td>
</tr>
<tr>
<td>Мегестрол ацетат</td>
<td>Агонист прогестерона</td>
<td>Рак молочной железы, рак эндометрия</td>
<td>Повышение веса, задержка жидкости</td>
</tr>
<tr>
<td>Тамоксифен</td>
<td>Связывается с рецептором эстрогена</td>
<td>Рак молочной железы</td>
<td>Горячие приливы, гиперкалциемия, тромбоzy глубоких вен</td>
</tr>
<tr>
<td>Гормоны: ингибиторы ароматазы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Анастрозол, эстрометестрант, тамоксифен</td>
<td>Связывается с рецептором эстрогена</td>
<td>Рак молочной железы, рак эндометрия</td>
<td>Горячие приливы, гиперкалциемия, тромбоzy глубоких вен</td>
</tr>
<tr>
<td>Леипролид ацетат</td>
<td>Ингибитирует секрецию гонадотропина</td>
<td>Рак предстательной железы</td>
<td>Горячие приливы, снижение либидо, задержание в месте инъекции</td>
</tr>
<tr>
<td>Мегестрол ацетат</td>
<td>Агонист прогестерона</td>
<td>Рак молочной железы, рак эндометрия</td>
<td>Повышение веса, задержка жидкости</td>
</tr>
<tr>
<td>Тамоксифен</td>
<td>Связывается с рецептором эстрогена</td>
<td>Рак молочной железы</td>
<td>Горячие приливы, гиперкалциемия, тромбоzy глубоких вен</td>
</tr>
<tr>
<td>Моноклональные антитела</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Аленумаб</td>
<td>Связывается с V- и T-клетками</td>
<td>Лимфомы</td>
<td>Иммуносупрессия</td>
</tr>
<tr>
<td>Бевацизумаб</td>
<td>Связывается с сосудистыми эндотелиальными факторами роста</td>
<td>Рак толстой кишки, почечно-клеточный рак</td>
<td>Гиперчувствительность, кровотечение, гипертензия</td>
</tr>
<tr>
<td>Гемтузумаб</td>
<td>Связывается с CD33 на поверхности лейкоцитов</td>
<td>Острый миелоидный лейкоз</td>
<td>Миелосупрессия</td>
</tr>
<tr>
<td>Ибритумомаб, тиксесан, Тоситумомаб</td>
<td>Связывается с CD20 на поверхности лимфоцитов</td>
<td>Лимфомы</td>
<td>Обеспечивает облучение опухолевых клеток</td>
</tr>
<tr>
<td>Йод-131 тоситумомаб, Тоситумомаб</td>
<td>Связывается с CD20 на поверхности лимфоцитов</td>
<td>Лимфомы</td>
<td>Миелосупрессия, лихорадка, сыпь</td>
</tr>
<tr>
<td>Ритуксимаб</td>
<td>Связывается с CD20 на поверхности лимфоцитов</td>
<td>B-клеточные лимфомы</td>
<td>Гиперчувствительность, иммуносупрессия</td>
</tr>
<tr>
<td>Трастузумаб</td>
<td>Связывается с рецептором HER2/neu</td>
<td>Рак молочной железы</td>
<td>Гиперчувствительность, кардиотоксичность</td>
</tr>
<tr>
<td>Другие антибиотики</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Митомицин</td>
<td>Ингибитирует синтез ДНК как бифункциональный алкилатор</td>
<td>Рак молочной железы, рак толстой кишки, аденокарцинома желудка, рак легкого, переходно-клеточный рак мочевого пузыря</td>
<td>Местная экстракапация вызывает некроз тканей, миелосупрессия, лейкопения и тромбоцитопения, могут развиваться через 4–6 недель после лечения</td>
</tr>
<tr>
<td>Карбопlatin</td>
<td>Образует перекрестные связи между цепями ДНК</td>
<td>Рак молочной железы, рак легкого, рак яичников</td>
<td>Миелосупрессия, периферическая нейропатия</td>
</tr>
<tr>
<td>Цисплатин</td>
<td>Образует перекрестные связи между цепями ДНК</td>
<td>Рак мочевого пузыря, рак молочной железы, рак головы и шеи, рак желудка, рак легкого, особенно мелко-клеточный рак яичка</td>
<td>Анеция, ототоксичность, тошнота, рвота, периферическая нейропатия, миелосупрессия</td>
</tr>
<tr>
<td>ПРЕПАРАТ</td>
<td>МЕХАНИЗМ ДЕЙСТВИЯ</td>
<td>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</td>
<td>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Оксалиплатин</td>
<td>Образует перекрестные связи между цепями ДНК</td>
<td>Рак толстой кишки</td>
<td>Милосупрессия, Нейропатическая боль в глотке, Периферическая нейропатия</td>
</tr>
<tr>
<td>Бортезомиб</td>
<td>Ингибитирует активность протеосом</td>
<td>Множественная миелома</td>
<td>Милосупрессия, Диарея, Тошнота, Запор, Периферическая нейропатия</td>
</tr>
<tr>
<td>Ингибиторы протеосом</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ингибиторы митоза (растительного происхождения): таксаны</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Доцетаксел</td>
<td>Стимулирует агрегацию микро-трубочек</td>
<td>Рак молочной железы, Рак головы и шеи, Рак легкого, Рак яичников</td>
<td>Милосупрессия, Алопеция, Сыпь, Задержка жидкости</td>
</tr>
<tr>
<td>Паклитаксел</td>
<td>Стимулирует агрегацию микро-трубочек</td>
<td>Рак мочевого пузыря, Рак молочной железы, Рак головы и шеи, Рак легкого, Рак яичников</td>
<td>Милосупрессия, Алопеция, Миалгия, Артралгия, Нейропатия</td>
</tr>
<tr>
<td>Ингибиторы митоза (растительного происхождения): винкаалкалоиды</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Винболастин</td>
<td>Блокирует митоз посредством ингибирования полимеризации микро-трубочек</td>
<td>Рак молочной железы, Саркома Юинга, Лейкоз, Лимфомы, Рак яичка</td>
<td>Алопеция, Милосупрессия, Периферическая нейропатия</td>
</tr>
<tr>
<td>Винкринтин</td>
<td>Блокирует митоз посредством ингибирования полимеризации микро-трубочек</td>
<td>Острый лейкоз, Лимфомы</td>
<td>Периферическая нейропатия, Илеус, Синдром неадекватной секреции антидиуретического гормона</td>
</tr>
<tr>
<td>Винорельбин</td>
<td>Блокирует митоз посредством ингибирования полимеризации микро-трубочек</td>
<td>Рак молочной железы, Рак легкого</td>
<td>Милосупрессия, Нейропатия</td>
</tr>
<tr>
<td>Ингибиторы топоизомеразы: антрациклины</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Даунорубицин</td>
<td>Ингибитирует топоизомеразу II, вызывает разрыв цепи ДНК</td>
<td>Лейкозы</td>
<td>Милосупрессия, Кардиотоксичность при кумулятивной дозе >1000 мг/м²</td>
</tr>
<tr>
<td>Доксорубицин</td>
<td>Ингибитирует топоизомеразу II, вызывает разрыв цепи ДНК</td>
<td>Острые лейкозы, Рак молочной железы, Рак легкого, Лимфомы</td>
<td>Тощнота, Рвота, Алопеция, Милосупрессия, Кардиотоксичность при кумулятивной дозе >550 мг/м²</td>
</tr>
<tr>
<td>Эпирубицин</td>
<td>Ингибитирует топоизомеразу II, вызывает разрыв цепи ДНК</td>
<td>Острый миелоидный лейкоз, Рак молочной железы, Рак желудка</td>
<td>Милосупрессия, Кардиотоксичность при кумулятивной дозе >1000 мг/м²</td>
</tr>
<tr>
<td>Ингибиторы топоизомеразы: камптотеканы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Иринотекан</td>
<td>Ингибитирует топоизомеразу I, вызывает разрыв цепи ДНК</td>
<td>Рак толстой кишки, Рак легкого, Рак прямой кишки</td>
<td>Диарея, Милосупрессия, Алопеция</td>
</tr>
<tr>
<td>Топотекан</td>
<td>Ингибитирует топоизомеразу I, вызывает разрыв цепи ДНК</td>
<td>Рак яичников, Меланоклеточный рак легкого</td>
<td>Милосупрессия</td>
</tr>
</tbody>
</table>
Глава 159. Принципы лечения злокачественных опухолей

Ингибиторы топоизомеразы: подофиллотоксины

<table>
<thead>
<tr>
<th>ПРЕПАРАТ</th>
<th>МЕХАНИЗМ ДЕЙСТВИЯ</th>
<th>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</th>
<th>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Этопозид</td>
<td>Ингибитирует топоизомеразу II, вызывает разрыв цепи ДНК</td>
<td>Острые лейкозы, Лимфома Ходжкина, Лимфомы, Рак легкого (особенно мелкоклеточный) Рак яичка</td>
<td>Тошнота, Рвота, Миелосупрессия, Периферическая нейропатия, Повышение токсичности при почечной недостаточности, Нейтропения, Выводится печенью и почками</td>
</tr>
<tr>
<td>Тенипозид</td>
<td>Ингибитор топоизомеразы II, вызывает разрыв цепи ДНК</td>
<td>Острые лейкозы, Лимфомы, Рак легкого (особенно мелкоклеточный) Рак яичка</td>
<td>Тошнота, Рвота, Миелосупрессия, Периферическая нейропатия, Повышение токсичности при почечной недостаточности, Нейтропения, Выводится печенью и почками</td>
</tr>
</tbody>
</table>

Ингибиторы тирозинкиназы

<table>
<thead>
<tr>
<th>ПРЕПАРАТ</th>
<th>МЕХАНИЗМ ДЕЙСТВИЯ</th>
<th>НАИБОЛЕЕ ЧУВСТВИТЕЛЬНЫЕ ОПУХОЛИ</th>
<th>ТОКСИЧНОСТЬ И КОММЕНТАРИИ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эрлотиниб</td>
<td>Ингибитирует рецептор эпiderмального фактора роста</td>
<td>Немелкоклеточный рак легкого, Острые лейкозы, Лимфомы, Рак яичка</td>
<td>Акне, Диарея</td>
</tr>
<tr>
<td>Гефитиниб</td>
<td>Ингибитирует BCR-ABL киназу и c-kit киназу</td>
<td>Хронический миелома, Гастроинтестинальная стромальная опухоль</td>
<td>Лейкемия, Гепатоцеллюлярная токсичность, Отец</td>
</tr>
<tr>
<td>Лапатиниб</td>
<td>Ингибитирует активность Her2/neuactivity</td>
<td>Рак молочной железы, Острые лейкозы</td>
<td>Диарея, Тошнота, Рвота, Сыпь</td>
</tr>
<tr>
<td>Сорафениб</td>
<td>Ингибитирует внутреклеточные и поверхностные киназы (например, рецепторы эндотелиального гепатоцеллюлярного фактора роста)</td>
<td>Печеночноклеточный рак, Острые лейкозы, Лимфомы</td>
<td>Гипертензия, Протеинурия</td>
</tr>
<tr>
<td>Сунитиниб</td>
<td>Ингибитирует рецептор тирозинкиназы</td>
<td>Гастроинтестинальная стромальная опухоль, Острые лейкозы</td>
<td>Гипертензия, Протеинурия</td>
</tr>
</tbody>
</table>

Щие препараты) имеют линейное соотношение доза – ответ и пропорционально увеличивают свою эффективность и свою токсичность при увеличении дозы. При применении высоких доз алькилирующие препараты могут вызывать апартуцию костного мозга, что требует трансплантации костного мозга для восстановления гемопоэза.

При отдельных опухолях эффективна монохимиотерапия (например, хорионкарцинома, волосатоклеточный лейкоз). Однако в большинстве случаев применяются мультикомпонентные режимы, содержащие препараты с разными механизмами действия и разной токсичностью. Это позволяет повысить количество убитых опухолевых клеток, снизить токсичность режима и вероятность развития лекарственной устойчивости. Такие режимы способны обеспечить высокую частоту излечения при отдельных онкологических заболеваниях (например, острые лейкозы, рак яичка, лимфома Ходжкина, неходжкинские лимфомы, реже — солидные опухоли, такие как мелкоклеточный рак легких и рак носоглотки). Многофазенные режимы обычно назначаются в виде повторяющихся циклов фиксированной комбинации препаратов. Интралы между циклами должны быть настолько короткими, насколько это необходимо для восстановления нормальных тканей. Продолжительная инфузия некоторых препаратов, специфичных к клеточному циклу (например, 5-фторурацила), может способствовать усилию клеточной гибели.

У каждого пациента необходимо соотнести вероятную эффективность и возможную токсичность лечения. Перед назначением препаратов с органоспецифичной токсичностью необходимо оценивать функцию органов-мишеней (например, эхокардиография перед назначением доксорубицина). Модификация доз препаратов или их исключение из схем лечения может быть необходимо при хронических заболеваниях легких (например, бронхиолит), почечной недостаточности (например, метотрексат) или пече-
Раздел 12. Гематология и онкология

ночной недостаточности (например, таксаны). Несмотря на меры предосторожности, неожидательные эффекты являются обычным результатом цитотоксической терапии. Наиболее сильно обычно поражаются ткани, имеющие короткий клеточный цикл, — костный мозг, волоссяные фолликулы и эпителии ЖКТ.

Визуализирующие исследования (КТ, МРТ, ПЭТ) обычно выполняются после 2–3 циклов лечения для определения ответа на лечение. При наличии ответа на лечение терапия продолжается. Если опухоль прогрессирует, несмотря на проводимое лечение, в режим вносят изменения или прекращают. Если достигается стабилизация заболевания, а пациент удовлетворительно переносит лечение, необходимо принять решение о продолжении проводимой терапии, учитывая, что болезнь в конечном итоге будет прогрессировать.

Гормональная терапия. При гормональной терапии применяются агонисты или антагонисты гормонов, влияющих на течение заболевания. Они могут применяться отдельно или в комбинации с другими вариантами лечения. Гормональная терапия особенно эффективна при раке предстательной железы, рост которого обусловлен воздействием андрогенов. Другие злокачественные опухоли, имеющие рецепторы гормонов на поверхности опухолевых клеток (например, рак молочной железы или эндометрия), могут быть чувствительны к антагонистам гормонов или гормональной абляции.

Применение преднизолона и других кортикостероидов также рассматривается как гормональная терапия. Данные препараты часто применяются при опухолях, происходящих из клеток иммунной системы (лимфомах, лимфобластных лейкозах, множественной миеломе).

Модификаторы биологического ответа. Интерфероны представляют собой протеины, которые синтезируются клетками иммунной системы как физиологический иммунный защитный ответ на чужеродные антигены (вирусы, бактерии, другие чужеродные клетки). В фармакологических дозах они способны облегчать течение некоторых злокачественных новообразований, в т.ч. волосатоклеточного лейкоза, хронического миелолейкоза, местно-распространенной меланомы, метастатического почечно-клеточного рака и саркомы Капоши.

Интралейкины, в первую очередь лимфокин IL-2, продуцируемые активированными T-клетками, могут применяться при метастатической меланоме и незначительно облегчить течение почечно-клеточного рака.

Препараты, влияющие на дифференцировку опухоли. Эти препараты индукционно инициируют дифференцировку опухолевых клеток. Транс-ретиноидная кислота является высокоэффективным средством для лечения остrego прогрессирующего лейкоза. К другим препаратам этого класса относятся производные мышьяка и гипометилирующие агенты азацитидин и дезоксиазацитидин. При применении в монорежиме эти препараты оказывают лишь транзиторный эффект, однако возможность их применения для профилактики рецидивов и в комбинации с цитотоксическими препаратами представляется многообещающей.

Антиангиогенные препараты. Солидные опухоли продуцируют факторы роста, которые формируют новые кровеносные сосуды, необходимые для поддержания опухолевого роста. В настоящее время доступно несколько препаратов, ингибирующих этот процесс. Воздействие на неоангиогенез является одним из свойств талидомида. Бевацикумаб, моноклональное антитело против фактора роста эндотелия сосудов (VEGF), эффективен при почечно-клеточном раке и раке толстой кишки. Ингибиторы рецепторов VEGF также эффективны при почечно-клеточном раке, гепатоцеллюлярном раке и гастроинтестинальных стромальных опухолях.

Ингибиторы тирозинкиназ. Многие эпителиальные опухоли имеют мутации, которые активируют сигнальные пути, способствующие их постоянной пролиферации и отсутствию дифференцировки. Эти мутации затрагивают ростовые факторы и белки, передающие сигналы от рецепторов факторов роста на поверхности клеток к клеточному ядру. На сегодняшний день в клинической практике применяются три ингибитора трансдукции сигналов — иматиниб (ингибитор тирозинкиназы BCR-ABL при хроническом миелолейкозе), эрлотиниб и гефитиниб (ингибиторы рецептора эпiderмального факто-
Глава 159. Принципы лечения злокачественных опухолей

1823

ра роста). Другие ингибиторы этих сигнальных путей в настоящее время изучаются.

Моноклональные антитела. Моноклональные антитела, направленные против уникальных опухолевых антигенов, эффективны при ряде онкологических заболеваний. Трастузумаб, антитело против белка Her-2 или Erb-B2, эффективен в комбинации с химиотерапией при метастатическом раке молочной железы. Антитела против антител CD, экспрессированных на поверхности опухолевых клеток, таких как CD20 и CD33, применяются у больных неходжкинскими лимфомами (анти-CD20 антитело ритуксимаб) и острым миелобластным лейкозом (антитело, связанное с токсином – гемтузумаб).

Эффективность моноклональных антител может быть повышена при связывании их с радиоактивными нуклидами. Один такой препарат, ибритумомаб, применяется в лечении неходжкинских лимфом.

Комбинированная и адъювантная химиотерапия

При некоторых злокачественных новообразованиях с высокой вероятностью рецидива, несмотря на оптимальное выполнение хирургического или лучевого лечения на начальном этапе, рецидив может быть предотвращен дополнительной адъювантной химиотерапией. Все чаще применяется комбинированная терапия (лучевая терапия, химиотерапия и хирургия), что позволяет проводить органосохраняющие процедуры и уменьшить повреждение органов.

Адъювантная терапия. Адъювантная терапия представляет собой системную химиотерапию или лучевую терапию, которая проводится после хирургического лечения для эрадикации резидуальных опухолевых клеток. Она может быть показана больным, имеющим высокий риск рецидива. Общие критерии применения адъювантной терапии основываются на местном распространенности первичной опухоли, наличии пораженных лимфоузлов и определенных морфологических и биологических характеристиках отдельных опухолевых клеток. Применение адъювантной терапии повысило безрецидивную выживаемость и излечиваемость больных раком молочной железы и колоректальным раком.

Неоадъювантная терапия. Неоадъювантной называется химиотерапия и/или лучевая терапия, которые проводятся до хирургической резекции опухоли. Это лечение способно увеличить резектабельность опухоли и сохранить функцию органа. Например, при раке головы и шеи, пищевода или прямой кишки неоадъювантная терапия позволяет уменьшить объем резекции. Другим преимуществом неоадъювантной терапии является оценка чувствительности опухоли к лечению; если первичная опухоль не отвечает на терапию, эрадикация микрометастазов маловероятна и необходимо применение другого режима лечения. Неоадъювантная терапия может скрыть истинную патоморфологическую стадию рака, уменьшая размеры опухоли и превращая гистологически позитивные лимфоузлы в негативные. Применение неоадъювантной терапии повысило выживаемость при воспалительном и местно-распространенном раке молочной железы, раке легкого IIIA стадии, раке носоглотки и мочевого пузыря.

Трансплантация костного мозга

Трансплантация костного мозга или гемопоэтических стволовых клеток является важным компонентом лечения рефрактерных к другим видам лечения лимфом, лейкозов и множественной миеломы.

Генная терапия

Эффективность генетической модуляции интенсивно изучается. Стратегии включают в себя использование антисенсной терапии, трансфекции системного вирусного вектора, введения ДНК в опухоль, генетической модуляции резецированных опухолевых клеток для повышения их иммуногенности и изменение иммунных клеток для повышения их противоопухолевой активности.

Лечение побочных эффектов противоопухоловой терапии

У больных, получающих лечение по поводу онкологических заболеваний, часто развиваются нежелательные явления. Лечение этих
явленний значительно улучшает качество жизни больных.

Тошнота и рвота
Больные злокачественными заболеваниями часто испытывают тошноту и рвоту, которые могут быть вызваны как самой опухолью (например, параксеноэластический синдром), так и лечением (химиотерапия, лучевая терапия на головной мозг или брюшную полость). При развитии рефрактерных тошноты и рвоты больной должен быть обследован с определением основных лабораторных показателей (электролиты, показатели функции печени, липаза) и визуализирующих методов исследования для исключения кишечной непроходимости и метастазов в головной мозг.

Антагонисты серотониновых рецепторов являются наиболее эффективными, но также и наиболее дорогими препаратами. Гранисетрон и ондансетрон практически нетоксичны, за исключением развития головной боли и ортостатической гипотензии. Препараты назначаются внутривенно за 30 минут до химиотерапии, ондансетрон в дозе 0,15 мг/кг, гранисетрон в дозе 10 мкг/кг. Ондансетрон может повторно вводиться через 4 и 8 часов после первого введения. При применении высокоэметогенных препаратов, таких как производные платины, эффективность противорвотных препаратов может быть повышена дополнительным назначением дексаметазона (8 мг в/в за 30 минут до химиотерапии, затем по 4 мг в/в каждые 8 часов).

Антагонист субстанции P и нейролейкина 1апрепитант может снижать тошноту и рвоту, вызванную высокоэметогенными препаратами. Он назначается в дозе 125 мг внутрь за 1 час до введения химиотерапии, далее – 80 мг внутрь за 1 час до введения химиотерапии на 2 и 3 дни.

Дронабинол (Δ-9-тетрагидроканнабинол [ТНС]) является альтернативным способом борьбы с тошнотой и рвотой, вызванными химиотерапией. ТНС является основным психоактивным компонентом марихуаны. Механизм его антиземетического действия неизвестен, однако каннабиноиды связываются с олигокинными рецепторами в переднем мозге и таким образом могут опосредованно ингибировать активность рвотного центра. Дронабинол вводится в дозе 5 мг/м² внутрь за 1–3 часа до химиотерапии и затем – через 2–4 часа после начала химиотерапии (не более 4–6 введений в день). Однако у препарата вариабельная биодоступность при назначении внутрь, он не эффективен при применении платиносодержащих режимов химиотерапии и обладает значительным количеством нежелательных явлений (сонливость, ортостатическая гипотензия, сухость во рту, изменения настроения, нарушение зрения и чувства времени). Курение марихуаны может быть более эффективным, и она разрешена с этой целью в некоторых странах. Однако она редко применяется, т.к. не всегда доступна, а также потому, что многие больные не переносят сам процесс курения.

Бензодиазепины, такие как лоразепам (1–2 мг внутрь или в/в за 10–20 мин до химиотерапии, далее – каждые 4–6 часов) иногда бывают эффективны при рефрактерной тошноте и рвоте.

Цитопении
Анемия, лейкопения и тромбоцитопения могут развиваться в ходе проведения химиотерапии или лучевой терапии.

Анемия. Клинические симптомы и снижение переносимости лучевой терапии могут развиваться при уровне гематокрита <30% или уровне гемоглобина <10 г/дл. У больных с заболеваниями коронарных или периферических сосудов этот уровень может быть выше. Рекомбинантные эритропоэтины могут быть назначены при снижении концентрации гемоглобина <10 г/дл в зависимости от симптомов. Обычно применяется доза 150–300 МЕ/кг п/к 3 раза в неделю (для взрослых обычно 10 000 МЕ). Это позволяет повысить уровень гемоглобина и снизить потребность в гемотрансфузиях. Длинно
только действующие формы эритропоэтина требуют менее частых введений (дарбепоэтин альфа, 2,25–4,5 мкг/кг п/к 1 раз в 1–2 недели). Необходимо избегать неоправданных введений эритропоэтинов. Иногда для устранения острых кардиореспираторных симптомов могут понадобиться трансфузии эритроцитарной массы.

Тромбоцитопения. Снижение уровня тромбоцитов ниже 10 000/мкл, особенно с проявлениями кровоточивости, требует трансфузий тромбоконцентрата. Малые молекулы, сходные с тромбопоэтином, в настоящее время доступны в клинической практике и широко применяются у больных, получающих лечение по поводу онкологических заболеваний.

Деплеция лейкоцитов из трансфузируемых компонентов крови предотвращает аллергемизацию и должна применяться при подготовке компонентов крови для больных, которым может понадобиться большое количество трансфузий тромбоцитов или трансплантации гемопоэтических стволовых клеток или костного мозга. Деплеция лейкоцитов также снижает вероятность заражения больного цитомегаловирусом через переливаемые компоненты крови. Гамма-облучение продуктов крови инактивирует лимфоциты, предотвращает индуцированную трансфузий реакцию «трансплантат против хозяина», и показано больным, получающим тяжелую иммуносупрессивную химиотерапию.

Нейтропения. Нейтропения (обычно определяемая как снижение уровня нейтрофилов <500/мкл, является предрасполагающим фактором к развитию жизнеугрожающих инфекций. Больные с отсутствием фебрильной лихорадки должны получать антибиотики широкого спектра действия, выбранные на основе наиболее вероятного источника инфекции. Если лихорадка разрешается в течение 72 часов после начала эмпирической антибиотикотерапии, лечение должно быть продолжено до подъема абсолютного числа нейтрофилов >500/мкл. Если лихорадка сохраняется на протяжении 120 часов, необходимо дальнейшие обследования (включая КТ грудной клетки и брюшной полости) на наличие оккультной инфекции.
торы (Г-КСФ) или гранулоцитарно-макрофагальные колониестимулирующие факторы (ГМ-КСФ). Г-КСФ в дозе 5 мкг/кг п/к 1 раз в день, до 14 дней, и их пролонгированные формы (например, пегфилграстим 6 мг п/к 1 раз за цикл химиотерапии) могут применяться для ускорения восстановления лейкоцитов. Эти препараты не должны вводиться в первые 24 часа после химиотерапии, при применении пегфилграстима химиотерапия не должна возобновляться ранее чем через 14 дней после его применения. Эти препараты незамедлительно назначаются при развитии фебрильной нейтрофилии, сепсиса или у афебрильных больных при уровне нейтрофилов <500/мкл.

Во многих центрах отдельные больные низкого риска с лихорадкой и нейтропенией лечатся амбулаторно. Такие больные не должны иметь гипотензии, нарушения ментального статуса, респираторного дистресс-синдрома, неконтролируемого болевого синдрома или гиперкальциемии. В таких случаях необходим ежедневный контроль врача, визиты медицинской сестры и введение антибиотиков в домашних условиях. В некоторых ситуациях есть возможность применения пероральных антибиотиков (суспензия каолина/пектина 60–120 мл обычной формы или 30–60 мл концентрированной внутрь при первых проявлениях диареи и далее после каждого жидкого стула; лоперамид 2–4 мг внутрь, или дифеноксилат/атропин 1–2 таблетки внутрь). Больным после операции на брюшной полости или получавшим в последние 3 мес антибиотики широкого спектра необходимо обследование стула на Clostridium difficile.

Анорексия. Снижение аппетита встречается у онкологических больных в ответ на противоопухолевое лечение или как следствие паранопластического синдрома. Наиболее эффективны кортикостероиды (дексаметазон 4 мг внутрь 1 раз в день, преднизолон 5–10 мг внутрь 1 раз в день) и мегестрол ацетат 400–800 мг один раз в день. Однако повышение аппетита и набор веса не улучшают показатели выживаемости и качество жизни больных.
Глава 159. Принципы лечения злокачественных опухолей

Боль

Болевой синдром необходимо предотвращать и активно купировать. Одновременное применение лекарственных средств различных групп может обеспечить лучший контроль над болью с меньшим количеством нежелательных явлений, чем при применении препаратов одного класса. Необходимо избегать применения нестероидных противовоспалительных препаратов у больных с тромбоцитопенией. Основой лечения являются опиоидные анальгетики. Они назначаются круглосуточно в эффективной дозе, с дополнительными введениями в случае ухудшения боли. Если пероральный прием препаратов невозможен, фентанил назначается трансдермально. При применении опиоидов часто показано назначение противорвотных средств и профилактической очистки кишечника.

Для лечения нейропатической боли применяется габапентин в высокой дозе (до 3,6 г/сут), однако применение можно начинать с малых доз с последующим повышением в течение нескольких недель. Кроме того, с этой целью могут назначаться трициклические антидепрессанты (например, нортриптилин 25–75 мг внутрь на ночь).

К немедикаментозным вариантам лечения болевого синдрома относятся локальная лучевая терапия, проводниковая блокада, хирургические вмешательства.

Депрессия

Депрессия у онкологических больных часто проходит незамеченной. Она может развиваться в ответ на заболевание (его симптомы и угрожающие последствия) как нежелательное явление при противоопухолевом лечении (например, интерферонами) или в связи с комбинацией этих факторов. Иногда усиление депрессии вызывает аlopeцию, развивающуюся как побочный эффект лучевой или химиотерапии. Открытный разговор с больным о его страхах может часто облегчить беспокойство. Депрессия во многих случаях хорошо поддается лечению.

Синдром лизиса опухоли

Синдром лизиса опухоли может иметь вторичный характер в ответ на выброс в кровоток внутриклеточных компонентов в результате распада опухолевых клеток после химиотерапии. Чаще всего он развивается при острых лейкозах и неходжкинских лимфомах, но может также наблюдатьсь при других гемобластозах и, реже, при солидных опухолях. Развитие этого синдрома может быть заподозрено у больных с большой опухолевой массой, у которых после начала химиотерапии развивается острая почечная недостаточность.

Диагноз подтверждается при наличии следующих симптомов:

- почечная недостаточность;
- гипокалиемия (<8 мг/дл);
- гиперурикемия (>15 мг/дл);
- гиперфосфатемия (>8 мг/дл).

Необходимо назначение аллопуринола (200–400 мг/м2 в/в 1 раз в день, максимально 600 мг/день) и проведения инфузий физиологического раствора хлорида натрия для достижения диуреза >2 л/сут с щадящим лабораторным и кардиологическим мониторингом. Больным с быстро растущими опухолями показано назначение аллопуринола не менее чем за 2 дня до начала химиотерапии и на всем ее протяжении; у больных с большим объемом опухоли его прием может быть продолжен в течение 10–14 дней после лечения. Все эти больные должны получать внутривенные инфузии NaHCO3 для ощелачивания мочи и повышения растворимости мочевой кислоты, ощелачивание может способствовать отложению фосфата кальция у больных с гиперфосфатемией, поэтому необходимо избегать повышения уровня pH мочи выше 7. Также для предотвращения синдрома лизиса опухоли может применяться расбуриказа – фермент, окисляющий мочевую кислоту до более растворимого аллантоина. Препарат применяется в дозе 0,15–0,2 мг/кг в/в в течение 30 минут 1 раз в день в течение 5–7 дней, первое введение проводится за 4–24 часа до химиотерапии. Побочные эффекты препарата включают анафилаксию, гемолиз, гемоглобинурию и метемоглобинемию.
РАКОВАЯ КАХЕКСИЯ

Кахексия определяется как снижение массы жировой ткани и скелетной мускулатуры. Она развивается при различных состояниях и часто встречается при многих онкологических заболеваниях, особенно при прогрессировании. Особенно выраженная кахексия наблюдается у больных раком поджелудочной железы и желудка. Больные с кахексией теряют 10–20% массы тела. У мужчин проявления кахексии, как правило, более выраженные, чем у женщин. Ни размер опухоли, ни распространенность метастатического процесса не влияют на выраженность кахексии. Кахексия ассоциирована со снижением эффективности лекарственного лечения, снижением функционального состояния больного и повышением летальности.

Основной причиной кахексии является не анорексия или снижение калорийности питания, а комплекс метаболических нарушений, включающий повышение тканевого катаболизма. Снижается синтез и повышается разрушение белков. Медиаторами кахексии являются ряд цитокинов, особенно фактор некроза опухоли-α, IL-1b и IL-6, которые продаются опухолевыми клетками и клетками хозяина в опухоли. Также важное значение имеет сигнальный путь АТФ-убиквитин-протеаза.

Кахексия легко распознается в первую очередь по потере веса, которая наиболее выраженно проявляется в виде снижения массы височной мышцы на лице. Потеря подкожной жировой клетчатки повышает риск развития изъязвлений в местах тесного прилегания костей к коже.

Лечение

Лечение включает непосредственное лечение онкологического заболевания. Если рак может быть взят под контроль или излечен, кахексия проходит.

Дополнительное питание не снижает проявления кахексии. Любой набор массы тела, как правило, минимальен и связан с увеличением массы жировой, а не мышечной массы, и не дает улучшения ни в общем состоянии больного, ни в прогнозе заболевания. Поэтому у большинства онкологических больных с кахексией высококалорийное питание не рекомендуется, как и парентеральное питание, за исключением случаев, когда пероральное питание невозможно.

Однако другие варианты лечения способны уменьшить выраженность кахексии и улучшить состояние больного. Кортикостероиды повышают аппетит и улучшают состояние больного, но незначительно повышают массу тела. Каннабиноиды (марихуана, дронабинол) также повышают аппетит, но не вес больного. Прогестагены, например мегестрол ацетат 40 мг внутрь 2–3 раза в день, могут повысить аппетит и массу тела. Препараты, способные нарушать продукцию и активность цитокинов, в настоящее время изучаются.

ИНКУРАБЕЛЬНЫЙ РАК

Даже в случаях неизлечимого рака паллиативная или экспериментальная терапия могут улучшить качество и продолжительность жизни больного. Однако в большинстве случаев врачи должны избегать применения малоэффективных лекарственных препаратов. Лучше обсуждать с больным возможные результаты такого лечения и ставить реалистичные цели. Решение больного отказаться от лечения необходимо принимать во внимание и уважать. Другой возможностью являются клинические исследования, риски и возможная эффективность которых также нуждаются в обсуждении.

Вне зависимости от прогноза, качество жизни онкологических больных может быть улучшено нутритивной поддержкой, эффективным контролем болевого синдрома, другой паллиативной поддержкой, оказанием психологической и социальной помощи пациентам и их родственникам. Больной должен знать, что медицинские работники всегда готовы оказать ему помощь, несмотря на прогноз. Хоспис и другие программы поддержки умирающих больных являются важной частью борьбы с онкологическими заболеваниями.